The function ring functors of pointfree topology revisited
author
Abstract:
This paper establishes two new connections between the familiar function ring functor ${mathfrak R}$ on the category ${bf CRFrm}$ of completely regular frames and the category {bf CR}${mathbf sigma}${bf Frm} of completely regular $sigma$-frames as well as their counterparts for the analogous functor ${mathfrak Z}$ on the category {bf ODFrm} of 0-dimensional frames, given by the integer-valued functions, and for the related functors ${mathfrak R}^*$ and ${mathfrak Z}^*$ corresponding to the bounded functions. Further it is shown that some familiar facts concerning these functors are simple consequences of the present results.
similar resources
On The Function Rings of Pointfree Topology
The purpose of this note is to compare the rings of continuous functions, integer-valued or real-valued, in pointfree topology with those in classical topology. To this end, it first characterizes the Boolean frames (= complete Boolean algebras) whose function rings are isomorphic to a classical one and then employs this to exhibit a large class of frames for which the functions rings are not o...
full textPointfree Pseudocompactness Revisited
We give several internal and external characterizations of pseudocompactness in frames which extend (and transcend) analogous characterizations in topological spaces. In the case of internal characterizations we do not make reference (explicitly or implicitly) to the reals.
full textCompleteness properties of function rings in pointfree topology
This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or σ-complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.
full textRings of Real Functions in Pointfree Topology
This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent function...
full textStrong 0-dimensionality in Pointfree Topology
Classically, a Tychonoff space is called strongly 0-dimensional if its Stone-Čech compactification is 0-dimensional, and given the familiar relationship between spaces and frames it is then natural to call a completely regular frame strongly 0-dimensional if its compact completely regular coreflection is 0-dimensional (meaning: is generated by its complemented elements). Indeed, it is then seen...
full textC- and C -quotients in Pointfree Topology
We generalize a major portion of the classical theory of Cand C embedded subspaces to pointfree topology, where the corresponding notions are frame Cand C -quotients. The central results characterize these quotients and generalize Urysohns Extension Theorem, among others. The proofs require calculations in CL, the archimedean f -ring of frame maps from the topology of the reals into the frame ...
full textMy Resources
Journal title
volume 11 issue Special Issue Dedicated to Prof. George A. Grätzer
pages 19- 32
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023