The Enhancement of Biodesulfurization Activity in a Novel Indigenous Engineered Pseudomonas putida

Authors

  • Babak Memari
  • Behnam Rasekh
  • Mohammad Javad Hajipour
  • Mojtaba Saadati
Abstract:

Background: The combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. In biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. The main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuels. Methods: Three genes (dszA,B,C) from dsz operon are responsible for the 4S pathway (biodesulfurization pathway) in Rhodococcus erythropolis IGTS8 were inserted into the chromosome of a novel indigenous Pseudomonas putida. The reaction catalyzed by products of dszA,B,C genes require FMNH2 supplied by dszD enzyme. Thus, pVLT31 vector harboring dszD gene was transferred into this recombinant strain. Results: The results demonstrated a higher biodesulfurization activity when the flavin reductase gene was transferred into recombinant P. putida harboring dszA,B,C. These results were approved by the Gibbs test and HPLC analysis. Conclusion: These analyses showed that this novel indigenous engineered P. putida could be a promising candidate for an industrial and environmental application for Biodesulfurization process.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the enhancement of biodesulfurization activity in a novel indigenous engineered pseudomonas putida

background: the combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. in biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. the main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuel...

full text

The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida.

BACKGROUND The combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. In biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. The main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuels...

full text

wuthering heights and the concept of marality/a sociological study of the novel

to discuss my point, i have collected quite a number of articles, anthologies, and books about "wuthering heights" applying various ideas and theories to this fantastic story. hence, i have come to believe that gadamer and jauss are rightful when they claim that "the individaul human mind is the center and origin of all meaning," 3 that reading literature is a reader-oriented activity, that it ...

15 صفحه اول

A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we ...

full text

comparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.

heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...

15 صفحه اول

Mixtures of Pseudomonas putida CECT 5279 cells of different ages: Optimization as biodesulfurization catalyst

Sulfur content in fossil fuels is known to be the most important anthropogenic cause of sulfur oxide emissions to the atmosphere. In order to avoid health, environmental and technical problems caused by this compound, legislation imposes restrictive limitations to fuel sulfur content. Biodesulfurization (BDS) can become a complementary technology to hydrodesulfurization (HDS) to face this situa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 4

pages  207- 213

publication date 2009-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023