The Energy and Exergy Analysis of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis with Optimized Water Path (RESEARCH NOTE)

Authors

  • G. R. Salehi Department of Mechanical Engineering, Petroleum University of Technology, Abadan, Iran
  • H. Raeissi Jelodar Department of Energy Systems Engineering, Petroleum University of Technology, Mahmoodabad, Iran
  • R. Abedini Department of Process, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract:

In this research, solar-drived integrated Hydrogen production (HP) using high-temperature steam electrolysis (HTSE) is thermodynamically evaluated. This system includes an organic Rankine cycle (ORC), Rankine cycle, Brayton cycle, solar tower, and High Temperature Steam Electrolysis (HTSE). Solar energy supplies thermal energy. This heat source is applied for generating power. This energy is used for HTSE due to its demand in the form of electricity. First, we calculated inlet and outlet energy and their rates for whole subsystems. The results showed 50.77% overall and 31.63% exergy efficiencies related to power generation section and 92.85% overall energy and 91% exergy efficiencies related to hydrogen production section. Also in this research we found the importance of auxiliary equipment. Auxiliary equipment helps that significant amount of hydrogen production to be saved. This amount at 577 K is equal that produces 0.093 kg H2/s

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hydrogen Production via CH4 and CO Assisted Steam Electrolysis

Porous composite anodes consisting of a yttria-stabilized zirconia (YSZ) backbone that was impregnated with CeO2 and various amounts of metallic components including Cu, Co and Pd were fabricated. The performance of these anodes was then tested in a solid oxide water electrolysis cell under conditions where the anode was exposed to the reducing gasses H2, CH4 and CO. The reducing gasses were us...

full text

Thermodynamics aspect of high pressure hydrogen production by water electrolysis

Hydrogen can be produced from water electrolysis which can operate at atmospheric pressure or high pressure. Today’s industry including vehicle one, devotes efforts to produce high pressure hydrogen by using pressurized electrolyser. The purpose of this work is to estimate the ideal electrical energy needed for high pressure hydrogen under high pressure water electrolysis conditions. Calculatio...

full text

Hydrogen Production by Alkaline Water Electrolysis

Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, moder...

full text

Advanced Exergy Evaluation of an Integrated Separation Process with Optimized Refrigeration System

Advanced exergy analysis is a tool to split the exergy destruction of the system to achieve a better perspective about the potentials of a system for improvements. In addition, the component interactions and their exergy destruction dependency with the other equipment are investigated through the advanced exergy analysis. For this purpose, it divides the exergy destruction calculated by convent...

full text

Investigation of a Single-reheat Condensing Steam Power Plant Based on Energy and Exergy Analysis

Nowadays, energy plays an important role in the economic and community development of country. Consequently, performance analysis of energy systems is one of the effective methods being used to prevent waste of energy resources. Among the different power generation technologies, steam power plants make a significant contribution to power generation in Iran, with a share of 47 % of electricity g...

full text

Investigation of a single-reheat condensing steam power plant based on energy and exergy analysis

Nowadays, energy plays an important role in the economic and community development of country. Consequently, performance analysis of energy systems is one of the effective methods being used to prevent waste of energy resources. Among the different power generation technologies, steam power plants make a significant contribution to power generation in Iran, with a share of 47 % of electrici...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 6

pages  893- 900

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023