The Effect of Magnet Width and Iron Core Relative Permeability on Iron Pole Radii Ratio in Spoke-Type Permanent-Magnet Machine: An Analytical, Numerical and Experimental Study
Authors
Abstract:
In this paper, we present a mathematical model for determining the optimal radius of the iron pole shape in spoke-type permanent-magnet (PM) machines (STPMM) in order to minimize the pulsating torque components. The proposed method is based on the formal resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative permeability effect of iron core in a subdomain model. The effect of PM width on the optimal radius of the iron pole has been investigated. In addition, for initial and optimal machines, the effect of the iron core relative permeability on the STPMM performances was studied at no-load and on-load conditions considering three certain PM widths. Moreover, the effect of iron pole shape on pulsating torque components with respect to certain values of iron core relative permeability was studied by comparing cogging torque, ripple and reluctance torque waveforms. In order to validate the results of the proposed analytical model, three motors with different PM widths were considered as case studies and their performance results were compared analytically and numerically. Two prototype spoke-type machines were fabricated and the experimental results were compared to analytical results. It can be seen that the analytical modeling results are consistent with the numerical analysis and experimental results.
similar resources
Semi-Analytical Modeling of Electromagnetic Performances in Magnet Segmented Spoke-Type Permanent Magnet Machine Considering Infinite and Finite Soft-Magnetic Material Permeability
In this paper, we present a semi-analytical model for determining the magnetic and electromagnetic characteristics of spoke-type permanent magnet (STPM) machine considering magnet segmentation and finite soft-material relative permeability. The proposed model is based on the resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative ...
full textAnalytical Calculation of Parallel Double Excitation and Spoke-type Permanent-magnet Motors; Simplified versus Exact Model
Abstract—This paper deals with the prediction of magnetic field distribution and electromagnetic performances of parallel double excitation and spoke-type permanent magnet (PM) motors using simplified (SM) and exact (EM) analytical models. The simplified analytical model corresponds to a simplified geometry of the studied machines where the rotor and stator tooth-tips and the shape of polar pie...
full textCylindrical Permanent-Magnet Structures Using Images in an Iron Shield
We report on cylindrical permanent-magnet structures that exploit the image effect in a surrounding circular soft-iron sheath. We present the theory for a general multipole ring, where the polarization direction = ( + 1) is a positive or negative integer, and is the angular coordinate. For the uniformly magnetized case = 1, a long cylindrical ring produces no field in its bore, and the field ou...
full textNovel permanent magnet linear motor with isolated movers: analytical, numerical and experimental study.
This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribut...
full textConsequent-Pole Permanent-Magnet Machine With Extended Field-Weakening Capability
In this paper a description and operating principles of a consequent-pole permanent-magnet machine are presented. In addition, a sizing analysis, finite-element analysis, and experimental results for a prototype machine are addressed. Due to its particular configuration, this machine allows for a wide range of control of the air-gap flux with minimum field ampere-turn requirements and without b...
full textModeling of Iron Losses of Permanent-Magnet Synchronous Motors
Permanent-magnet (PM) motors offer potential energy savings as compared with induction motors because of the virtual elimination of rotor loss and the reduction of stator loss from operation near unity power factor. In PM machines, iron losses form a significant fraction of the total loss partly due to the nonsinusoidal flux density distribution. Design optimization therefore requires good mean...
full textMy Resources
Journal title
volume 17 issue 2
pages 1802- 1802
publication date 2021-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023