The distinguishing chromatic number of bipartite graphs of girth at least six

Authors

Abstract:

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum degree $Delta (G)$,  then    $chi_{D}(G)leq Delta (G)+1$.  We also obtain an upper bound for $chi_{D}(G)$ where $G$ is a graph with at most one cycle. Finally, we state a relationship between the distinguishing chromatic number of a graph and its spanning subgraphs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six

An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge-coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ a (G). We prove that χ a (G) is at most the maximum degree plus 2 if G is a planar graph without isolated edges w...

full text

Distinguishing Chromatic Numbers of Bipartite Graphs

Extending the work of K. L. Collins and A.N. Trenk, we characterize connected bipartite graphs with large distinguishing chromatic number. In particular, if G is a connected bipartite graph with maximum degree ∆ ≥ 3, then χD(G) ≤ 2∆ − 2 whenever G 6∼= K∆−1,∆, K∆,∆.

full text

Group chromatic number of planar graphs of girth at least 4

Jeager et al introduced a concept of group connectivity as an generalization of nowhere zero flows and its dual concept group coloring, and conjectured that every 5-edge connected graph is Z3-connected. For planar graphs, this is equivalent to that every planar graph with girth at least 5 must have group chromatic number at most 3. In this paper we show that if G is a plane graph with girth at ...

full text

Girth and Chromatic Number of Graphs

This paper will look at the relationship between high girth and high chromatic number in both its finite and transfinite incarnations. On the one hand, we will demonstrate that it is possible to construct graphs with high oddgirth and high chromatic number in all cases. We will then look at a theorem which tells us why, at least in the transfinite case, it is impossible to generalize this to in...

full text

The Distinguishing Chromatic Number of Kneser Graphs

A labeling f : V (G) → {1, 2, . . . , d} of the vertex set of a graph G is said to be proper d-distinguishing if it is a proper coloring of G and any nontrivial automorphism of G maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of G, denoted by χD(G), is the minimum d such that G has a proper d-distinguishing labeling. Let χ(G) be the chromatic nu...

full text

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  81- 87

publication date 2016-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023