The categories of lattice-valued maps, equalities, free objects, and $mathcal C$-reticulation

author

Abstract:

In this paper, we study the concept of $mathcal C$-reticulation for the category $mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $mathcal C$ and the $mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $mathcal C$-reticulation is presented, in the case where $mathcal C$ is equational. Some relations between the concepts reticulation and satisfying equalities and inequalities are studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES

We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...

full text

Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies

Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...

full text

The Reticulation of a Residuated Lattice

In this paper we define the reticulation of a residuated lattice, prove that it has “good properties“, present two constructions for it, prove its uniqueness up to an isomorphism, define the reticulation functor and give several examples of finite residuated lattices and their reticulations.

full text

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

full text

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

full text

CONNECTING T AND LATTICE-VALUED CONVERGENCES

$top$-filters can be used to define $top$-convergence spaces in the lattice-valued context. Connections between $top$-convergence spaces and lattice-valued convergence spaces are given. Regularity of a $top$-convergence space has recently been defined and studied by Fang and Yue. An equivalent characterization is given in the present work in terms of convergence of closures of $top$-filters.  M...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue Special Issue Dedicated to Prof. George A. Grätzer

pages  93- 112

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023