The best uniform polynomial approximation of two classes of rational functions

Authors

  • M. R. Eslahchi
  • Sanaz Amani
Abstract:

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Best Uniform Polynomial Approximation of Two Classes of Rational Functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the theoretical results.

full text

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

full text

Best uniform polynomial approximation of some rational functions

This thesis is based on the following paper :Mehdi Dehghan , M.R. Eslahchi, Best uniform polynomialapproximation of some rational functions , Computers andMathematics with Applications ,Best polynomial approximation problem is one of the mostimportant and applicable subjects in the approxi References1. [1] J . C . Mason , D . C . Handscomb , Chebyshevpolynomials ...

full text

a method to obtain the best uniform polynomial approximation for the family of rational function

in this article, by using chebyshev’s polynomials and chebyshev’s expansion, we obtain the best uniform polynomial approximation out of p2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

full text

The best approximation of some rational functions in uniform norm

Here we are concerned with the best approximation by polynomials to rational functions in the uniform norm. We give some new theorems about the best approximation of 1/(1 + x) and 1/(x − a) where a > 1. Finally we extend this problem to that of computing the best approximation of the Chebyshev expansion in uniform norm and give some results and conjectures about this.  2005 IMACS. Published by...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue None

pages  93- 102

publication date 2012-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023