The augmented Zagreb index, vertex connectivity and matching number of graphs

Authors

  • A. Ali Department of Mathematics, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore, Pakistan.
  • A. Bhatti Department of Mathematics, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore, Pakistan.
  • Z. Raza Department of Mathematics, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore, Pakistan.and Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.
Abstract:

Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

the augmented zagreb index, vertex connectivity and matching number of graphs

let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.

full text

The Hyper-Zagreb Index of Trees and Unicyclic Graphs

Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.

full text

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

full text

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

full text

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

full text

On augmented eccentric connectivity index of graphs and trees

In this paper we establish all extremal graphs with respect to augmented eccentric connectivity index among all (simple connected) graphs, among trees and among trees with perfect matching. For graphs that turn out to be extremal explicit formulas for the value of augmented eccentric connectivity index are derived.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 2

pages  417- 425

publication date 2016-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023