Tetrabutylammonium Perchlorate electrolyte on electrochemical properties of spinel MgCo2O4 nanoparticles
Authors
Abstract:
Spinel magnesium Cobaltite (MgCo2O4) nanoparticles with a crystalline size in the range of ∼16 nm were prepared by a simple co-precipitation technique with NaOH as a precipitant. The formation of spinel MgCo2O4 phase was confirmed by X-ray diffraction (XRD) pattern. Scanning electron microscope (SEM) images showed that aggregated nanoplates. The electrochemical performance of modified MgCo2O4 electrodes was investigated with 2M of tetrabutylammonium perchlorate (TBA) electrolyte. The cyclic voltammetry (CV) results revealed that the MgCo2O4 electrode reached the highest specific capacitance of 390 °F/g at a scan rate of 5mV/s. The excellent electrochemical performance was absorbed due to the electrochemical faradaic redox reactions related to the intercalation/de-intercalation of the tetrabutylammonium cation (TBA+) and MgCo2O4 lattice, and brings an additional pseudocapacitive contribution. The present work proves that the prepared magnesium cobaltite can serve as advanced electrode material for next generation organic electrolyte supercapacitors.
similar resources
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولAntibacterial properties of spinel ferrite nanoparticles
This book chapter is organized into four major parts. Firstly, it will cover an introduction of using spinel ferrite nanoparticles in biomedical applications, including the antibacterial properties. The second part will provide an overview of the structure and magnetism of spinel ferrites. The third part will focus on the preparation of cobalt ferrite and transition metal substituted cobalt fer...
full textCrystalization in Spinel Ferrite Nanoparticles
The enhanced interest of the researchers in nanoobjects is due to the discovery of unusual physical and chemical properties of these objects, which is related to manifestation of so-called ‘quantum size effects‘. These arise in the case where the size of the system is commensurable with the de-Brogli wavelengths of the electrons, phonons or excitons propagating in them.A key reason for the chan...
full textElectrochemical stimulation of microbial perchlorate reduction.
As part of our studies into the diversity of dissimilatory perchlorate reducing bacteria (DPRB) we investigated the reduction of perchlorate in the cathodic chamber of a bioelectrical reactor (BER). Our results demonstrated that washed cells of Dechloromonas and Azospira species readily reduced 90 mg L(-1) perchlorate in the BER with 2,6-anthraquinone disulfonate (AQDS) as a mediator. No perchl...
full textNature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy
In this work, nanostructured LiMn₂O₄ (LMO) and LiMn₂O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of...
full textElectrochemical Stimulation of Microbial Perchlorate Reduction
J . C A M E R O N T H R A S H , † J . I A N V A N T R U M P , † K A R R I E A . W E B E R , † E L I S A B E T H M I L L E R , ‡ L A U R I E A . A C H E N B A C H , ‡ A N D J O H N D . C O A T E S * , † , § Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901, and Eart...
full textMy Resources
Journal title
volume 11 issue 1
pages 26- 31
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023