Systemic Risk Evaluation of Banks and financial institutions applying Markov clustering method and centrality measures of risk
Authors
Abstract:
Systemic risk is the risk beared by an economic system because of a special organization. This means that a liquidity problem or a financial crisis in one company could trigger a chain of reactions that puts the whole market into trouble. This kind of risk was underestimated until 2008 financial crisis. Now federal regulations exist for controlling this risk of financial institutions. Among diversified methods of systemic risk evaluation, centrality measures have the most accuracy. In this paper, we apply a combined method of systemic risk evaluation using semi-central centrality and Markov clustering method. Results show outperformance of proposed method over classic criterion CoVaR.
similar resources
the study of practical and theoretical foundation of credit risk and its coverage
پس از بررسی هر کدام از فاکتورهای نوع صنعت, نوع ضمانت نامه, نرخ بهره , نرخ تورم, ریسک اعتباری کشورها, کارمزد, ریکاوری, gdp, پوشش و وثیقه بر ریسک اعتباری صندوق ضمانت صادرات ایران مشخص گردید که همه فاکتورها به استثنای ریسک اعتباری کشورها و کارمزد بقیه فاکتورها رابطه معناداری با ریسک اعتباری دارند در ضمن نرخ بهره , نرخ تورم, ریکاوری, و نوع صنعت و ریسک کشورها اثر عکس روی ریسک اعتباری داردو پوشش, وثی...
15 صفحه اولComplex financial institutions and systemic risk
The objective of this paper is to identify the bank organizational structures that generate substantial systemic risk and to explain why banks have incentives for creating them. We seek the explanation in a bank’s incentive to exploit financial synergies by choosing an organizational structure that maximizes the benefits the bank can derive from an interest tax shield, reduced default cost and ...
full textIdentifying patterns of the dynamic credit risk of banks customers and financial institutions: case study- an Iranian bank
Credit risk assessment has always been one of the most important concerns of banks. Widely used models such as financial models have been used to assess credit risk so far. But increasing non-performing loans indicates that today these models cannot assess the credit risk of customers. Inconstant and uncertain environmental, social and political factors affect customer behavior and change custo...
full textA financial network perspective of financial institutions’ systemic risk contributions
This study considers the effects of the financial institutions’ local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial n...
full textthe study of aaag repeat polymorphism in promoter of errg gene and its association with the risk of breast cancer in isfahan region
چکیده: سرطان پستان دومین عامل مرگ مرتبط با سرطان در خانم ها است. از آنجا که سرطان پستان یک تومور وابسته به هورمون است، می تواند توسط وضعیت هورمون های استروئیدی شامل استروژن و پروژسترون تنظیم شود. استروژن نقش مهمی در توسعه و پیشرفت سرطان پستان ایفا می کند و تاثیر خود را روی بیان ژن های هدف از طریق گیرنده های استروژن اعمال می کند. اما گروه دیگری از گیرنده های هسته ای به نام گیرنده های مرتبط به ا...
15 صفحه اولThe Comparison of Applying a Designed Model to Measure Credit Risk Between Melli and Mellat Banks
The main purpose of this paper is providing a model to calculate the credit risk of Melli bank clients and implement it at Mellat Bank. Therefore, the present study uses a multi-layered neural network method. The statistical population of this research is all real and legal clients of Melli and Mellat banks. Sampling method used in this research is a simple random sampling method. Friedman test...
full textMy Resources
Journal title
volume 27 issue 30
pages 115- 140
publication date 2020-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023