Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23)
Authors
Abstract:
ZnO- nanoparticles with an average particle size of 24 nm were successfully synthesized using the microwave assisted sol- gel technique. Structural and morphological properties of the nanoparticles were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy disperse spectrum (EDS) and Fourier transform infrared spectroscopy (FTIR). The band gap energy was measured to be 3.27 eV. The photocatalytic degradation of tartrazine has been studied in aqueous solution under UV-C irradiation at different pH values, catalyst doses, and tartrazine concentration. Degradation of samples was monitored by a spectrophotometer. Results have shown that 95% of 50 mg L-1 tartrazine was degraded in 120 min due to the photocatalytic degradation in presence of 0.02 g of ZnO-nanoparticles. The photocatalytic degradation kinetics has also been investigated. The experimental data were fitted very well in the pseudo-first-order kinetic and Langmuir-Hinshelwood models.
similar resources
Photocatalytic degradation of 2, 4, 6-Ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method
This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transf...
full textPhotocatalytic degradation of 2, 4, 6-Ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method
This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transf...
full textphotocatalytic degradation of 2, 4, 6-ttrichlorophenol with cds nanoparticles synthesis by microwave-assisted sol-gel method
this paper reports the synthesis and characterization of photocatalyst cds nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. cds nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as x-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, fourier transf...
full textMicrowave-assisted Synthesis of MgFe2O4-ZnO Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation
In this work firstly MgFe2O4 nanoparticles were synthesized via a microwave-assisted method. The product was calcinated at 900 ºC for 2h. At the second step zinc oxide shell was synthesized on the ferrite under ultrasonic waves. Properties of the product were examined by X-ray diffraction pattern (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Vibr...
full textSol-gel Synthesis of ZnO Nanoparticles and ZnO-TiO2-SiO2 Nanocomposites and Their Photo-catalyst Investigation in Methylene Blue Degradation
In this work firstly ZnO nanoparticles were synthesized via a simple precipitation method. At the second step titanium dioxide and silicon dioxide shell were synthesized on the core. For preparation ZnO-TiO2-SiO2 the sol product was calcinated at 500 ºC for 2h. Properties of the product were examined by X-raydiffraction pattern (XRD), scanning electron microscope (SEM) and Fourier transform inf...
full textMy Resources
Journal title
volume 8 issue 3
pages 241- 249
publication date 2017-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023