Synthesis of Single Phase Tin(II) Oxide Nanoparticles by Microwave-Assisted Hydrothermal Technique

Authors

  • Atefe Marasi Department of Physics, Malek-Ashtar University of Technology, Shahinshahr, Isfahan, I.R. IRAN
  • Maryam Amoo Department of Physics, Malek-Ashtar University of Technology, Shahinshahr, Isfahan, I.R. IRAN
  • Parviz Boroojerdian Department of Physics, Malek-Ashtar University of Technology, Shahinshahr, Isfahan, I.R. IRAN
  • Sohrab Manouchehri Department of Physics, Malek-Ashtar University of Technology, Shahinshahr, Isfahan, I.R. IRAN
Abstract:

This paper presents a novel microwave-assisted hydrothermal technique for synthesizing tin(II) oxide nanoparticles. This technique can be used for producing large quantities of homogeneous nanoparticles in a short time. The effect of the solution molarity, final pH, hydrothermal processing time and microwave power were studied. The tin(II) oxide structure verified from XRD and the mean crystallite size was evaluated to be about 5 nm using the Debye-Scherrer formula on the most intense peak. The particle size was measured from STM pictures in the range between 4-5 nm. For different samples, UV-Vis spectroscopy showed the absorption peak due to tin(II) oxide at about 240 nm and an exitonian peak at about 280 nm that shifted with respect to solution molarity, final pH, hydrothermal processing time and microwave power. The photoluminescence spectroscopy (PL) results showed the emission peaks in the visible spectrum range. The results showed that synthesized SnO nanoparticles have a direct bandgap equal to about 2.5 eV, an Urbach energy of about 2.7 eV and activation energy of 47.75kJ/mol.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Microwave-assisted synthesis of molybdenum oxide nanoparticles

This paper focused on a simple approach for synthesis of molybdenum oxide (MoO3) nanoparticles and reports a facile route for synthesis of such nanoparticles, using microwave irradiation as a homogenous and powerful source of heating, using ethylene glycol as the solvent and heating medium. For more investigations, besides microwave heating, the obtained solutions were also treated by conventio...

full text

Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles

Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...

full text

microwave–assisted hydrothermal synthesis and optical characterization of sno2 nanoparticles

semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that arenot present in their bulk counterparts. in this work, extremely fine and pure sno2 nanoparticles of ~1.1nm size were synthesized by a solution process, in which amorphous precipitate of sno2 was crystallizedby microwave heating. the particles sizes varied from ~1.1 to ~2.7 nm. by xrd analysis...

full text

microwave-assisted synthesis of molybdenum oxide nanoparticles

this paper focused on a simple approach for synthesis of molybdenum oxide (moo3) nanoparticles and reports a facile route for synthesis of such nanoparticles, using microwave irradiation as a homogenous and powerful source of heating, using ethylene glycol as the solvent and heating medium. for more investigations, besides microwave heating, the obtained solutions were also treated by conventio...

full text

Surfactant-assisted synthesis of Barium hexaferrite nanoparticles by hydrothermal method

In the present work, the synthesis of Barium hexaferrite (BaFe12O19) nanoparticles in thepresence of a large excess amount of OH− anions by the hydrothermal method in the presence and absence of surfactants such as Sodium dodecyl benzene sulfonate and Triton X-114 was reported. The optimized temperature in the absence of surfactant was determined (200 °C) and then Barium hexaferrite nanoparticl...

full text

T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis

Iron oxide nanoparticles have long been studied as a T₂ contrast agent in MRI due to their superparamagnetic behavior. T₁-based positive contrast, being much more favorable for clinical application due to brighter and more accurate signaling is, however, still limited to gadolinium- or manganese-based imaging tools. Though being the only available commercial positive-contrast agents, they lack ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 37  issue 6

pages  1- 8

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023