Synthesis of nanostructured palladium, palladium oxide and palladium-palladium oxide nanocomposite by the gel combustion method and application as catalyst of hydrogen release

Authors

  • Ehsan Atin Department of Chemistry, Payame Noor University, 19395-4697, Tehran, I.R. of Iran
  • Hassan Karami Nano Research Laboratory, Payame Noor University, Abhar, Iran
Abstract:

This paper presents a new gel combustion method to synthesize palladium nanoparticles, palladium oxide (PdO) nanoparticles and palladium-palladium oxide nanocomposites. In the proposed method, there are some effective parameters including palladium chloride concentration, polyvinyl alcohol (PVA) concentration, acid concentration, solvent composition and combustion temperature that their values are investigated and optimized by the "one at a time" method. The experimental data shows that the combustion temperature is the main factor that controls the sample composition to obtain palladium, palladium oxide or palladium-palladium nanocomposites. Characterization of the synthesized samples is performed by SEM, TEM, XRD and BET specific surface area measurements. The optimized sample consisted of clusters; each cluster is composed of smaller nanoparticles with an average diameter of 25 mm and 10 m2. g-1 specific surface areas. The optimized Pd-PdO nanocomposite is successfully used as nanocatalyst for the hydrogen revolution.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Green Synthesis of Iron Oxide-Palladium Nanocomposites by Pepper extract and Its Application in Removing of Colored Pollutants from Water

Fe3O4 nanoparticles were synthesized in the presence of pepper extract as a capping agent via a hydrothermal method. Then palladium nanoparticles and Fe3O4-Pd nanocomposites were synthesized with the aid of pepper extract as a reducing agent. Vibrating Sample magnetometer illustrated that Fe3O4 nanoparticles have super paramagnetic behaviour. The photo catalytic behaviour of Fe3O4-Pd nanocompos...

full text

Palladium/zirconium oxide nanocomposite as a highly recyclable catalyst for C-C coupling reactions in water.

Palladium nanoparticles have been electrochemically supported on zirconium oxide nanostructured powders and all the nanomaterials have been characterized by several analytical techniques. The Pd/ZrO(2) nanocatalyst is demonstrated to be a very efficient catalyst in Heck, Ullmann, and Suzuki reactions of aryl halides in water. The catalyst efficiency is attributed to the stabilization of Pd nano...

full text

Nanostructured Palladium-Doped Silica Membrane Layer Synthesis for Hydrogen Separation: Effect of Activated Sublayers

Palladium doped silica membranes were synthesized by the sol-gel method using two different procedures. The first palladium-doped silica membrane (M1) was synthesized with a coating of four layers of silica-palladium sol. The second membrane (M2) was synthesized with a coating of two silica layers followed by a coating of two silica-palladium layers. Scanning electron microscopy (SEM) proved th...

full text

Development of Palladium-Alloy Membranes for Hydrogen Separation and Purification

This paper summarizes R&D activities and progress at NORAM Engineering and the University of British Columbia (UBC) on preparation and testing of thin palladium-based membranes and their applications. Most of these activities were carried out internally at NORAM, some jointly with UBC and their spin-off company, Membrane Reactor Technology (MRT) through a wide range of projects. Key results out...

full text

Hydrogen adsorption on palladium and palladium hydride at 1bar

The dissociative sticking probability for H2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H–D exchange reaction at 1 bar. The sticking probability for H2, S, is higher on Pd hydride than on Pd (a factor of 1.4 at 140 C), but the apparent desorption energy derived from S is the same on Pd and Pd hydride within t...

full text

Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass su...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue Issue 4, pp. 359-490

pages  449- 465

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023