Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method

Authors

  • mahkameh dastpak Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran
  • majid farahmandjou Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran
Abstract:

Nanomaterials have achieved remarkable technological advances in bulk materials due to their excellent physical, chemical and biological properties. cerium oxide (CeO2) nanostructured doped with Fe ions is attractive due to improvement in redox properties, transport property and surface-to-volume ratio. In this research, Fe-doped CeO2 nanoparticles (NPs) were prepared by simple solgel method. The as-synthesized and annealed samples were studied by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The XRD result revealed the cubic crystal structure of Fe-doped CeO2 NPs. The FESEM images showed that the uniformity of the NPs increase with increasing calcination temperature. The TEM studies demonstrated the 20 nm uniform NPs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Wet chemical synthesis and physical characterization of doped CeO2 nanoparticles

Solid electrolytes based on doped cerium oxide, Ce(M)O2-δ (M = rare-earth cations), are of considerable interest for potential use in low temperature solid oxide fuel cells (LTSOFCs) due to its higher ionic conductivity than YSZ based solid electrolyte.  In this research work, crystalline, pure Ce1-xMxO2-δ (where M = Gd or Sm, x = 0.10 or 0.20) based nanoparticles were prepared by chemical prec...

full text

Synthesis of Cu Doped NiO Nanoparticles by Chemical Method

The Cu doped NiO (NiO:Cu) nanoparticles were synthesized by co-precipitation method using NiCl2.6H2O, CuCl2.2H2O for Ni and Cu sources, respectively. Sodium hydroxide has been used as a precipitator agent. Effect of Cu doping agent on the structural and optical properties of nanostructures were characterized by XRD, SEM, AFM, spectrophotometry, FTIR a...

full text

Fe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route

FeCe nanoparticles were synthesized by simple co-precipitation method using Iron chloride hexahydrate (FeCl3.6H2O) and cerium chloride (CeCl2•5H2O) as precursors in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XR...

full text

CTAB-assisted of Fe2O3/CeO2 nanosized prepared by coprecipitation method

Recently, cerium oxide (CeO2) nanoparticles have been widely used in engineering andmedical sciences due to the diversity of their applications. Fe-Ce nanoparticles were synthesized bysimple co-precipitation method via iron nitrate (Fe(NO3)3.9H2O) and cerium nitrate (Ce(NO3)3.6H2O) asprecursor in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples wer...

full text

Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–doped CeO2 Films under Visible Light Irradiation

Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase...

full text

synthesis of cu doped nio nanoparticles by chemical method

the cu doped nio (nio:cu) nanoparticles were synthesized by co-precipitation method using nicl2.6h2o, cucl2.2h2o for ni and cu sources, respectively. sodium hydroxide has been used as a precipitator agent. effect of cu doping agent on the structural and optical properties of nanostructures were characterized by xrd, sem, afm, spectrophotometry, ftir and vsm techniques. xrd revealed that nio:cu ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 31  issue 1

pages  39- 43

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023