Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
Authors
Abstract:
In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to synthesize the chitaline copolymer. The synthesized chitaline then reacted with functionalized single- walled carbon nanotube to prepare chitaline-single walled carbon nanotube nanocomposite. The synthesized nanocomposite was also characterized to evaluate the structure and morphology by Fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermo gravimetric analysis (TGA). The results showed that the formation of the composite in nano scale can be good carbon materials with high adsorption capacity in porous surfaces for improving the properties as a good candidate such as nano bio filter for removing the organic and inorganic wastes from water.
similar resources
synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite
in this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. for this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. in other step, aniline monomers and chitosan were polymerized in the presence of iron (iii) chloride to sy...
full textSynthesis and characterization of functionalized single - walled Carbon nanotube/ Chitosan/Polyaniline nanocomposite
25 ABSTRACT: In this work the synthesis of polyaniline/chitosan/functionalized singlewalled carbon nanotube nanocomposite is carried out. For this purpose, single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) Ch...
full textModeling of the adsorption kinetics of Basic Red 46 on single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube
The present study was carried out to investigate the potential of single-walled carbon nanotube (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) as alternative adsorbents for the removal of Basic Red 46 (BR 46) from contaminated water by using batch adsorption studies. Effects of some key operating parameters such as pH, ionic strength and contact time on...
full textSurfactant-free assembling of functionalized single-walled carbon nanotube buckypapers
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or ...
full textLinkage of doxycycline onto functionalized multi-walled carbon nanotube and morphological characterization
In this paper functionalized multiwall carbon nanotubes (FMWCNT) were modified using doxycycline, containing reactable nitrogen, which can attach chemically to functionalized MWCNT. The synthesized nano compounds were characterized by Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. These spectrums proved the existence of nitrogen atoms of amide functional groups. The mor...
full textMy Resources
Journal title
volume 7 issue 1
pages 25- 32
publication date 2016-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023