Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
Authors: not saved
Abstract:
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted natural fiber with its specific economic,mechanical and biological properties has been used for fabrication FRP scaffolds. In this study FRP scaffolds prepared by a combination of silk fibroin polymer, which is another configuration of silk fibers as a porous matrix and silk fibers as the reinforcement element. FRP scaffolds have been fabricated by the freeze-drying method. Microstructure has been analyzed by scanning electron microscopy and the results show an integrative structure. Mechanical properties have been evaluated by universal testing machine. Compressive mechanical modules as well as strength of FRP scaffolds increased about three times in magnitude in comparison with pure fibroin scaffolds. FRP scaffolds had a compressive module of ~3.6 MPa. Osteoblast viability and attachment on FRP scaffolds were investigated in vitro by MTT assay, which showed no cytotoxic response. Additionally, based on SEM results it is concluded that FRP scaffolds provide a good environment for osteoblast attachment.
similar resources
Polymer-based composite scaffolds for tissue engineering.
Tissue engineering may be defined as the application of biological, chemical and engineering principles toward the repair, restoration or regeneration of living tissue using biomaterials, cells and biologically active molecules alone or in combinations. The rapid restoration of tissue biomechanical function represents a great challenge, highlighting the need to mimic tissue structure and mechan...
full textDevelopment and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers
Natural rubber composites filled with short natural fibers (flax and sawdust) were prepared by blending procedure and the elastomer cross-linking was carried out using benzoyl peroxide. The microbial degradation of composites was carried out by incubating with Aspergillus niger recognized for the ability to grow and degrade a broad range of substrates. The extent of biodegradation was evaluated...
full textBiodegradable Polymer-bioceramic Composite Scaffolds for Bone Tissue Engineering
Critical size bone defects due to trauma or disease are very difficult to repair via the natural growth of the host bone. Therefore, these defects must be filled with a bridging material (scaffold), which should also, in combination with relevant cells and signalling molecules, promote the regeneration of new bone tissue. In this context, bone regeneration is one of the most attractive areas in...
full textAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
full textFabrication of Polymer Scaffolds for Tissue Engineering
A new approach to the fabrication of individual implants and scaffolds for tissue engineering—surface selective laser sintering (SSLS)—is proposed and realized. In contrast to the conventional selective laser sintering, the SSLS method makes it possible to sinter polymer microparticles and melt the near-surface layer rather than the microparticle as a whole. The effect of the laser radiation pa...
full textNovel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to posse...
full textMy Resources
Journal title
volume 10 issue 3
pages 184- 190
publication date 2012-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023