SWITCHING TEAMS ALGORITHM FOR SIZING OPTIMIZATION OF TRUSS STRUCTURES
author
Abstract:
Meta-heuristics have received increasing attention in recent years. The present article introduces a novel method in such a class that distinguishes a number of artificial search agents called players within two teams. At each iteration, the active player concerns some other players in both teams to construct its special movements and to get more score. At the end of some iterations (like quarters of a sports game) the teams switch their places for fair play. The algorithm is developed to solve a general purpose optimization problem; however, in this article its application is illustrated on structural sizing design. Switching Teams Algorithm is presented as a parameter-less population-based algorithm utilizing just two control parameters. The proposed method can recover diversity in a novel manner compared to other meta-heuristics in order to capture global optima.
similar resources
SIZING OPTIMIZATION OF TRUSS STRUCTURES WITH NEWTON META-HEURISTIC ALGORITHM
This study is devoted to discrete sizing optimization of truss structures employing an efficient discrete evolutionary meta-heuristic algorithm which uses the Newton gradient-based method as its updating scheme and it is named here as Newton Meta-heuristic Algorithm (NMA). In order to enable the NMA population-based meta-heuristic to effectively explore the discrete design space, a term contain...
full textHeat Transfer Search Algorithm for Sizing Optimization of Truss Structures
Heat transfer search (HTS) is a novel metaheuristic optimization algorithm that simulates the laws of thermodynamics and heat transfer. In this study, the HTS algorithm is adapted to truss structure optimization. Sizing optimization searches for the minimum weight of a structure subject to stress and displacement constraints. Three truss structures often taken as benchmarks in the optimization ...
full textModified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables
This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...
full textDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
full textA HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...
full textTesting Soccer League Competition Algorithm in Comparison with Ten Popular Meta-heuristic Algorithms for Sizing Optimization of Truss Structures
Recently, many meta-heuristic algorithms are proposed for optimization of various problems. Some of them originally are presented for continuous optimization problems and some others are just applicable for discrete ones. In the literature, sizing optimization of truss structures is one of the discrete optimization problems which is solved by many meta-heuristic algorithms. In this paper, in or...
full textMy Resources
Journal title
volume 10 issue 3
pages 365- 389
publication date 2020-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023