Surface Tension Prediction of n-Alkanes by a Modified Peng-Robinson Equation of State Using the Density Functional Theory

Authors

  • Nahid Farzi Department of chemistry, university of Isfahan,Iran
Abstract:

Through this study, the ability of a modified Peng-Robinson (MPR) equation of state in predicting the surface tension of n-alkanes based on the density functional theory approach was investigated and compared with other studies. The interfacial layer thickness and the density profile were calculated simultaneously at different temperatures from triple point to near critical point using the modified Peng-Robinson equation of state. It was shown that the calculated thickness of interfacial layer increases with decrease in the chain length of n-alkanes molecules and raising of temperature. The surface tension of n-alkanes was calculated using the calculated values of thin layers’ densities. It was shown that the calculated surface tension of n-alkanes decreases with temperature in accordance with the experiment. The average relative error in prediction of the surface tension by the MPR equation of state was in the range of 2.5-6% while it was 4.6-25.2% by the Peng-Robinson equation of state. The validity of the MPR equation of state in the surface tension prediction of n-alkanes containing C1-C10 has been proved by comparing the results of this work with other studies.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Interfacial tension of nonassociating pure substances and binary mixtures by density functional theory combined with Peng-Robinson equation of state.

We develop a density functional theory and investigate the interfacial tension of several pure substances N(2), CO(2), H(2)S, normal alkanes from C(1) to nC(10), and binary mixtures C(1)/C(3), C(1)/nC(5), C(1)/nC(7), C(1)/nC(10), CO(2)/nC(4), N(2)/nC(5), N(2)/nC(6), N(2)/nC(8), N(2)/nC(10), nC(6)/nC(7), nC(6)/nC(8), and nC(6)/nC(10). The theory is combined with the semiempirical Peng-Robinson e...

full text

Modification of the Peng-Robinson Equation of State (Generalization)

A modification of Peng-Robinson equation is described wherein in the parameter b is expressed as a linear function of temperature. The modified equation is then applied to a series of light hydrocarbons and refrigerants, and predicted values for vapor pressure, saturated vapor volume, saturated liquid volume and the heat of evaporation are compared with the corresponding experimental data. ...

full text

modification of the peng-robinson equation of state (generalization)

a modification of peng-robinson equation is described wherein in the parameter b is expressed as a linear function of temperature. the modified equation is then applied to a series of light hydrocarbons and refrigerants, and predicted values for vapor pressure, saturated vapor volume, saturated liquid volume and the heat of evaporation are compared with the corresponding experimental data. cons...

full text

Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State

The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions...

full text

High Pressure Phase Equilibrium of (Solvent + Salt + CO2) Systems by the Extended Peng-Robinson Equation of State

An extended Peng-Robinson equation of state (EPR-EOS) is used to model the vapor-liquid equilibrium (VLE) in systems containing (water + NaCl + CO2), (water + methanol + NaCl + CO2), (water + Na2SO4 + CO2) and (water + NH4Cl + CO2). The binary and ternary interaction parameters between salt and solvent are adjusted...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 3

pages  569- 583

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023