Super Pair Sum Labeling of Graphs

Authors

  • P. Sugirtha Department of Mathematics Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215,Tamil Nadu, INDIA.
  • R. Vasuki Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215,Tamil Nadu, INDIA
  • S. Arockiaraj Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi-626124, Tamil Nadu
Abstract:

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {it super pair sum graph}. Here we study about the super pair sum labeling of some standard graphs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

full text

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

full text

edge pair sum labeling of some cycle related graphs

let g be a (p,q) graph. an injective map f : e(g) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: v (g) → z - {0} defi ned by f*(v) = σp∈ev f (e) is one-one where ev denotes the set of edges in g that are incident with a vertex v and f*(v (g)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} u {±k(p+1)/2} according a...

full text

edge pair sum labeling of spider graph

an injective map f : e(g) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph g(p, q) if the induced vertex function f*: v (g) → z − {0} defined by f*(v) = (sigma e∈ev) f (e) is one-one, where ev denotes the set of edges in g that are incident with a vetex v and f*(v (g)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} u {k(p+1)/2} accordin...

full text

Edge Pair Sum Labeling of Some Subdivision of Graphs

An injective map f : E(G) → {±1,±2, · · · ,±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f∗ : V (G) → Z − {0} defined by f∗(v) = ∑ e∈Ev f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f∗(V (G)) is either of the form { ±k1,±k2, · · · ,±k p 2 } or { ±k1,±k2, · · · ,±k p−1 2 } ∪ { ±k p+1 2 } according as ...

full text

Minimal Sum Labeling of Graphs

A graph G is called a sum graph if there is a so-called sum labeling of G, i.e. an injective function l : V (G) → N such that for every u, v ∈ V (G) it holds that uv ∈ E(G) if and only if there exists a vertex w ∈ V (G) such that l(u) + l(v) = l(w). We say that sum labeling l is minimal if there is a vertex u ∈ V (G) such that l(u) = 1. In this paper, we show that if we relax the conditions (ei...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 2

pages  13- 22

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023