Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

author

Abstract:

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient conditions for digraphs to be maximally edge-connected in terms of the zeroth-order general Randic index, the order and the minimum degree when  Using the associated digraph of a graph, we show that our results include some corresponding known results on graphs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

sufficient conditions on the zeroth-order general randic index for maximally edge-connected digraphs

let $d$ be a digraph with vertex set $v(d)$. for vertex $vin v(d)$, the degree of $v$,denoted by $d(v)$, is defined as the minimum value if its out-degree and its in-degree.now let $d$ be a digraph with minimum degree $deltage 1$ and edge-connectivity$lambda$. if $alpha$ is real number, then the zeroth-order general randic index is definedby $sum_{xin v(d)}(d(x))^{alpha}$. a digraph is maximall...

full text

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

full text

Sufficient conditions for maximally edge-connected graphs and arc-connected digraphs

A connected graph with edge connectivity λ and minimum degree δ is called maximally edge-connected if λ = δ. A strongly connected digraph with arc connectivity λ and minimum degree δ is called maximally arc-connected if λ = δ. In this paper, some new sufficient conditions are presented for maximally edge-connected graphs and arc-connected digraphs. We only consider finite graphs (digraphs) with...

full text

Maximally edge-connected digraphs

In this paper we present some new sufficient conditions for equality of edge-connectivity and minimum degree of graphs and digraphs as well as of bipartite graphs and digraphs.

full text

Maximal Value of the Zeroth-order Randic Index

Let G(n; m) be a connected graph without loops and multiple edges which has n vertices and m edges. We ÿnd the graphs on which the zeroth-order connectivity index, equal to the sum of degrees of vertices of G(n; m) raised to the power − 1 2 , attains maximum.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  1- 13

publication date 2016-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023