STUDY ON NIOBIUM CARBIDE COATING FORMATION ON AISI L2 STEEL USING THERMO-REACTIVE DEPOSITION METHOD
Authors
Abstract:
In the present research, to form niobium carbide coating on the surface of AISI L2 steel Thermo-Reactive Deposition method (TRD) in a molten bath was used. Niobium carbide coating treatment was carried out at 1173 K, 1273 K, and 1373 K for 2, 4, and 8 hours. The molten bath contained 20wt.% borax (Na2B4O7), 5 wt.% boric acid (B2O3), and 75 wt.% ferro-niobium. The presence and properties of the coated layer were studied by means of Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD) analysis. The thickness of coating ranged between 6.6 µm to 33µm depending on treatment time, and temperature. The effects of treatment time and temperature on the coating thickness were studied. Kinetic study of the formation of NbC coating showed that growth of the coating is under the control of diffusion. The activation energy of the process was estimated to be 122 kJ/mol. A practical formula to estimate the coating thickness was suggested.
similar resources
Kinetic Study of Niobium Carbide Coating Formation on AISI L2 Steel using Thermo-Reactive Deposition Technique
In the present study, Thermo-Reactive Deposition method (TRD) in a molten bath was used to form niobium carbide coating on AISI L2 steel. The coating was formed in five different composition of borax (Na2B4O7), boric acid (B2O3), and ferro-niobium. For all of the five compositions of molten bath, niobium carbide coating treatment was carried out at 1173 K, 1273 K, and 1373 K for 2, 4 and 8 hour...
full textSTUDY ON VANADIUM CARBIDE COATING FORMATION ON AISI L2 STEEL BY THERMO-REACTIVE DEPOSITION TECHNIQUE
Abstract: The possibility of vanadium carbide coating formation on AISI L2 steel was studied in molten salt bath containing 33 wt% NaCl- 67 wt% CaCl2. In this research, the effects of time, temperature and bath composition on growing layer thickness were studied. The vanadium carbide coating treatment was performed in the NaCl-CaCl2 bath at 1173, 1273 and 1373 K temperatures for 3, 6, 9 hours a...
full textINVESTIGATION OF CHROMIUM AND VANADIUM CARBIDE COATING FORMATION ON SKD11 AND T10 BY THERMO-REACTIVE DIFFUSION (TRD) METHOD
Carbide coatings, due to their excellent anti-wear properties, are used to extend the life of molds exposed to abrasion forces. Various processes have been applied to produce carbide coatings. Thermo-reaction diffusion (TRD) using a molten salt bath could be considered as an economical method compared to other coating processes. In this study carbide-composite coatings using molten salt baths c...
full textThe Effect of Niobium on the Formation of Nanostructured Low Carbon Steel Using Martensite Treatment
The formation of nano/ultrafine grained ferrite in low carbon steels containing different amounts of niobium was investigated using thermomechanical treatment which consisted of annealing of 85% cold rolled martensite with different parameters. The specimens were characterized by optical and scanning electron microscopy and Vickers hardness test. A lamellar dislocation cell structure was formed...
full textOptimization of Surface Roughness in Hard Turning of AISI 4340 Steel using Coated Carbide Inserts
The use of multilayer coated carbide tool in hard turning has several advantages over grinding process such as; reduction of processing costs, increased productivity, short cycle time, compatible surface roughness and less enviornment problems without the use of cutting fluid. In the present study, an attempt has been made to evaluate the performance of multilayer coated carbide inserts during ...
full textFormation of Surface Nano/Ultrafine Structure using Deep Rolling Process on the AISI 316L Stainless Steel
Austenitic stainless steels (ASSs) have an excellent corrosion resistance but relatively-low hardness and yield strength [1,2], leading to limited usage in applications that high values of hardness and wear resistance is necessary for material surface. Therefore, surface properties such as hardness must be improved using appropriate techniques. Mechanical surface treatments such as ultrasonic s...
full textMy Resources
Journal title
volume 11 issue 3
pages 24- 31
publication date 2014-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023