Study of the Parameters Affecting Cylindrical Cloak Using Dispersive FDTD

Authors

  • Ali Arab Department of Applied Physics, Malek-Ashtar University of Technology
Abstract:

In this paper, an ideal cylindrical metamaterial invisibility cloak with infinite-length which its electric permittivity and magnetic permeability mapped to the Drude dispersion model is simulated. The sinusoidal plane waves with microwave frequencies used as sources. To this end, the dispersive finite-difference time-domain method (FDTD) used with Convolutional Perfectly Matched Layered (CPML) absorbing boundaries conditions. A comparison performed between scattering of cloaked and non-cloaked PEC cylinder. And finally, the influence of incident wave frequency, thickness of cloak and observer angle relative to the propagation line to performance of cloak, was surveyed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Cylindrical invisibility cloak with simplified material parameters is inherently visible.

It was proposed that perfect invisibility cloaks can be constructed for hiding objects from electromagnetic illumination [J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006)10.1126/science.1125907]. The cylindrical cloaks experimentally demonstrated [D. Schurig, Science 314, 977 (2006)10.1126/science.1133628] and theoretically proposed [W. Cai, Nat. Photon. 1, 224 (2007)10.1038/...

full text

Title : Piecewise linear recursive convolution for dispersive media using FDTD

Introduced a new method for computing dispersive media using finite difference time domain method by employing the recursive convolution approach to evaluate the discrete time convolution of the electric field and the dielectric susceptibility function. The RC approach results in a fast and computationally efficient algorithm; however, the accuracy achieved is not generally as good as that obta...

full text

Nanoplasmonics FDTD Simulations Using a Generalized Dispersive Material Model

This work deals with the use of our recent generalized dispersive material (GDM) model built on Pade approximants that is applied to FDTD simulations of nanoplasmonic structures. In particular, our original formulation is compared to the classical recursive-convolution technique for the Lorentz oscillator using a complex recursive accumulator. The proposed GDM model is then used to simulate the...

full text

The Study of Improvement of Dispersive Soil Using Magnetic Field

In this study, the feasibility of using magnetic technology to reduce the dispersion of soil has been investigated. The reference treatment was potable water and 3 magnetic water devices (with different magnetic intensities) were used for magnetizing the potable water. The results showed that the magnetic field has a significant effect in order of 5 percent on increasing of magnesium concentrat...

full text

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

PML-FDTD in Cylindrical and Spherical Grids

Perfectly matched layers (PML’s) are derived for cylindrical and spherical finite-difference time-domain (FDTD) grids. The formulation relies on the complex coordinate stretching approach. Two-dimensional (2-D) cylindrical and three-dimensional (3-D) spherical staggered-grid FDTD codes are written based on the time-domain versions of the equations. Numerical simulations validate the formulation...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue None

pages  3- 8

publication date 2015-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023