Study of Pedotransfer Functions Multivariate regression, MLP and RBF to estimate CEC for Soils of North Ahvaz

Authors

  • Ali Gholami Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
  • Ali Salehi Department of Soil Science, Khouzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran.
  • kamran Mohsenifar Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Abstract:

To estimate the Cation Exchange Capacity (CEC), indirect manner used of Pedotransfer Functions (PTFs). CEC is one of the important soil fertility factors, and not measured directly because it is costly and time consuming. Thus, used from regression equations between easily and non-easily soil properties. The purpose of this research, is develop the PTFs for CEC, with use of easily available soil properties. For this purpose, measured for 100 sample of soil contain of 1000 data include soil particle size distribution, bulk density, organic matter, lime, pore space, geometric mean diameter and geometric standard deviation were done. After data normalization, were done PTFs with Multivariate Regression (MR) in SPSS and Artificial Neural Networks (ANNs) for soil CEC in MATLAB software. The ANNs used in research are Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF). Education of ANNs are based on trial and error, until arrived suitable outputs with changes hidden layer number and neuron number. From all data were Selected 70% (700) data for training and 30% (300) for teste. Then were entered all data to software and test different networks with one hidden layer. The network was design with trial and error to maximum correlation coefficient and minimum mean square error (MSE). The results were shows MR is suitable for predict CEC (R2 =0.87) and for MLP network, were shows ANN can good estimated CEC with used of easily soil properties. MLP network able to estimate CEC with 9 neurons in input layer, 7 neurons in hidden layer and 1 neuron in output layer with tangent sigmoid transfer function, Linear transfer function and Bayesian learning algorithm with coefficient correlation 0.97 and MSE 0.013. For RBF networks to estimation CEC coefficient correlation and MSE were 0.55, 0.017 respectively. Results shows the MLP network with 1 hidden layer for estimation CEC with use of soil distribution, bulk density, organic matter and lime, is better than RBF network compared with of MSE and coefficient correlation. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

morphology, geochemistry, mineralogy, and micromorphology of soils of hormozgan province in relation to parent materials

ویژگی های زمین شیمیایی، کانی شناسی، و میکرومورفولوژیکی خاک ها و سنگ مادر مربوطه در منطقه بین بخش های جنوبی زاگرس و خلیج فارس تا دریای عمان(استان هرمزگان، ایران) مورد بررسی قرار گرفت. هدف های این مطالعه شناسایی تغییرات در خصوصیات فیزیکی، شیمیایی، و ترکیب کانی شناسی خاک، مطالعه میکرومورفولوژی و تکامل خاک، و بررسی توزیع عنصر خاک بر اساس هوازدگی، پروسه های خاک و زمین شناسی جهت توصیف اثرات مواد مادر...

15 صفحه اول

a contrastive study of rhetorical functions of citation in iranian and international elt scopus journals

writing an academic article requires the researchers to provide support for their works by learning how to cite the works of others. various studies regarding the analysis of citation in m.a theses have been done, while little work has been done on comparison of citations among elt scopus journal articles, and so the dearth of research in this area demands for further investigation into citatio...

Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils

In the recent years, new techniques such as; artificial neural networks and fuzzy inference systems were employed for developing of the predictive models to estimate the needed parameters. Soft computing techniques are now being used as alternate statistical tool. Determination of swell potential of soil is difficult, expensive, time consuming and involves destructive tests. In this paper, use ...

full text

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 7...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 16

pages  61- 72

publication date 2017-09-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023