Structural, Optical and Ultra-Violet Photodetection Properties of ZnO Nanorods with Various Aspect Ratios
Authors
Abstract:
ZnO nanorods with various lengths were synthesized by a two-stage route (by changing the time of growth between 0-240 min) and were characterized using XRD, SEM, UV–Vis and PL techniques. The SEM and XRD results confirmed a fast growth of (0 0 2) plane in the preferential longitudinal orientation, in contrast to lateral growth and therefore, by increasing the time of hydrothermal growth, nanorods with higher aspect ratios are obtained. Naturally, by increasing the length of nanorods, not only the average transmittance in both near ultraviolet and visible ranges is decreased, but also the PL peaks are red-shifted and extinct. Finally, ultra-violet photodetection of the samples shows that higher active surface area (with respect to the time of growth) is appropriate for photo-induced interactions leading to higher UV-sensitivity.
similar resources
Investigating structural, optical and photocatalytic properties of hydrothermally synthesized ZnO nanorod arrays with various aspect ratios
ZnO nanorods with various aspect ratios (by changing the time of growth between 0-240 min) were synthesized using hydrothermal method and were investigated using XRD, SEM, UV–Vis and PL. It was found that growth time is directly coupled with the length, orientation and aspect ratio of the nanorod arrays. The optical transmittance of the NR arrays indicated a regular decrement of average transmi...
full textElectrical, optical and structural properties of ZnO nanorods thin films deposited over ZnO substrates
ZnO thin films with grain morphology were obtained over glass substrates using the sol–gel method; these films were used as substrates to grow ZnO nanorods using chemical bath deposition (CBD) technique. The transmittance percentage of two films was over 85% and the electrical resistivity decreased when ZnO nanorods were grown over the ZnO thin film with grain morphology. A laser is incident at...
full textRoom-temperature violet luminescence and ultraviolet photodetection of Sb-doped ZnO/Al-doped ZnO homojunction array
A Sb-doped ZnO microrod array was fabricated on an Al-doped ZnO thin film by electrodeposition. Strong violet luminescence, originated from free electron-to-acceptor level transitions, was identified by temperature-dependent photoluminescence measurements. This acceptor-related transition was attributed to substitution of Sb dopants for Zn sites, instead of O sites, to form a complex with two Z...
full textInfluence of Cr dopant on the microstructure and optical properties of ZnO nanorods
One-dimensional (1D) undoped and Cr doped ZnO nanorods with average length of 1 µm and diameter of 80 nm were synthesized using hydrothermal method where a fast growth of ZnO nanorods on the seed layer was observed. Afterwards, the effects of Cr dopant on structural, surface morphology and optical properties of nanorods were studied using X-ray diffraction (XRD), scanning electron microscopy (S...
full textHydrothermal preparation and optical properties of ZnO nanorods
In the present paper, ZnO nanorods with the mean size of 50 nm× 250 nm were successfully synthesized via a hydrothermal synthesis route in the presence of cetyltrimethylammonium bromide (CTAB). ZnCl2 and KOH were used as the starting materials and zinc oxide nanorods were obtained at 120 ◦C for 5 h. The product was characterized by means of X-ray powder diffraction (XRD), transmission electron ...
full textEvolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm²) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs an...
full textMy Resources
Journal title
volume 4 issue 3
pages 43- 51
publication date 2016-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023