Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings

author

Abstract:

In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family of demi-contractive mappings. Also, we prove that the sequence generated by this algorithm is strong convergence to a solution of a system of variational inequalities over the set of common fixed points of quasi-nonexpansive mappings and strict pseudo-contractive mappings in a Hilbert space. Finally, some applications of this results are present for solving the split common fixed point problem, which entails finding a point which belongs to the set of common fixed points of a finite family of of strict pseudo-contractive mappings in a Hilbert space such that its image under a linear transformation belongs to the set of common fixed points of a finite family of nonexpasive mappings in the image space.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

Solutions of variational inequalities on fixed points of nonexpansive mappings

n this paper , we propose a generalized iterative method forfinding a common element of the set of fixed points of a singlenonexpannsive mapping and the set of solutions of two variationalinequalities with inverse strongly monotone mappings and strictlypseudo-contractive of Browder-Petryshyn type mapping. Our resultsimprove and extend the results announced by many others.

full text

Strong Convergence to Common Fixed Points of a Finite Family of Nonexpansive Mappings

Let C be a closed convex subset of a Banach space E. A mapping T of C into itself is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote by F(T) the set of fixed points of T . Let T1,T2, . . . ,Tr be a finite family of nonexpansive mappings satisfying that the set F =⋂i=1F(Ti) of common fixed points of T1,T2, . . . ,Tr is nonempty. The problem of finding a common fixed point has...

full text

Iterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings

We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  0- 0

publication date 2020-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023