Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings
Authors
Abstract:
We introduce a general implicit algorithm for finding a common element of the set of solutions of systems of equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the solution of systems of equilibrium problems and the common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings.
similar resources
strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings
we introduce a general implicit algorithm for finding a common element of the set of solutions of systems of equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings. then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...
full textStrong Convergence of a General Implicit Algorithm for Variational Inequality Problems and Equilibrium Problems and a Continuous Representation of Nonexpansive Mappings
We introduce a general implicit algorithm for finding a common element of the set of solutions of systems of equilibrium problems and the set of common fixed points of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the solution...
full textStrong convergence for variational inequalities and equilibrium problems and representations
We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...
full textStrong Convergence Theorems for Family of Nonexpansive Mappings and System of Generalized Mixed Equilibrium Problems and Variational Inequality Problems
We introduce a new iterative scheme by hybrid method for finding a common element of the set of common fixed points of infinite family of nonexpansive mappings, the set of common solutions to a system of generalized mixed equilibrium problems, and the set of solutions to a variational inequality problem in a real Hilbert space. We then prove strong convergence of the scheme to a common element ...
full textStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
full textstrong convergence for variational inequalities and equilibrium problems and representations
we introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition fo...
full textMy Resources
Journal title
volume 40 issue 4
pages 977- 1001
publication date 2014-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023