Stress Redistribution Analysis of Piezomagnetic Rotating Thick-Walled Cylinder with Temperature-and Moisture-Dependent Material Properties

author

  • Mahdi Saadatfar Department of Mechanical Engineering, University of Qom, Qom, P.O. Box 3716146611, Iran
Abstract:

In this article, the problem of time-dependent stress redistribution of a piezomagnetic rotating thick-walled cylinder under an axisymmetric hygro-thermo-magneto-electro-mechanical loading is analyzed analytically for the condition of plane strain. Using the constitutive equations, a differential equation is found in which there are creep strains. Primarily, eliminating creep strains, an analytical solution for the primitive electric and magnetic potential in addition to stresses is obtained. Then, creep strains are kept and creep stress rates are found by utilizing Norton’s law and Prandtl-Reuss equations for steady-state hygrothermal boundary condition. Lastly, the history of stresses and radial displacement as well as magnetic and potential fields during the time is obtained using an iterative method.  In the numerical examples, the effect of angular velocity, hygrothermal loading and thermal and moisture concentration dependency of elastic constants is investigated comprehensively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Thermo-elastic Analysis of Functionally Graded Thick- Walled Cylinder with Novel Temperature – Dependent Material Properties using Perturbation Technique

In this work, thermo – elastic analysis for functionally graded thick – walled cylinder with temperature - dependent material properties at steady condition is carried out. The length of cylinder is infinite and loading is consist of internal hydrostatic pressure and temperature gradient. All of physical and mechanical properties expect the Poisson's ratio are considered as multiplied an expone...

full text

Creep Stress Redistribution Analysis of Thick-Walled FGM Spheres

Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an internal pressure and a uniform temperature field is investigated. The material creep and mechanical properties through the radial graded direction are assumed to obey the simple power-law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal and creep strain...

full text

Hygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere

In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differen...

full text

Design and analysis of Stress on Thick Walled Cylinder with and with out Holes

The conventional elastic analysis of thick walled cylinders to final radial & hoop stresses is applicable for the internal pressures up to yield strength of material. The stress is directly proportional to strain up to yield point Beyond elastic point, particularly in thick walled cylinders. The operating pressures are reduced or the material properties are strengthened. There is no such existi...

full text

Mathematical Modeling of Thermoelastic State of a Thick Hollow Cylinder with Nonhomogeneous Material Properties

The object of the present paper is to study heat conduction and thermal stresses in a hollow cylinder with nonhomogeneous material properties. The cylinder is subjected to sectional heating at the curved surface. All the material properties except for Poisson’s ratio and density are assumed to be given by a simple power law in the axial direction. A solution of the two-dimensional heat conducti...

full text

Torsion in Microstructure Hollow Thick-Walled Circular Cylinder Made up of Orthotropic Material

In this paper, a numerical solution has been developed for hollow circular cylinders made up of orthotropic material which is subjected to twist using micro polar theory. The effect of twisting moment and material internal length on hollow thick-walled circular cylinder made up of micro polar orthotropic material is investigated. Finite difference method has been used to exhibit the influence o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  90- 104

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023