Strength Characteristics of Clay Mixtures with Waste Materials in Freeze-Thaw Cycles
Authors
Abstract:
Waste tires, rubbers, plastic and steel materials, normally produced in every society, enter the environment and cause serious problems. These problems may, to some extent, be reduced by finding applications for them in engineering, for example, they can be used for geotechnical applications as backfill material and solving problems with low shear strength soils. Such materials may be subjected to freeze-thaw cycles, resulting in strength reduction. Freeze–thaw cycling is a weathering process which is normal in cold climates. In these cycles, thermodynamic conditions at temperatures below C cause translocation of water and ice which can change the engineering properties of soils. The present study investigates the effect of reinforcing soil with tire chips and steel fibers to reduce the effects of freeze-thaw cycles. To this aim, reinforced kaolinite clay was compacted in the laboratory and exposed to a maximum of 6 closed-system freeze-thaw cycles. The results of the study reveal that adding tires to clay prevents strength reduction due to freeze-thaw cycles. The soil samples which were mixed with 2% of steel fibers and 10% of tire chips were not affected by the freeze and thaw cycles as the pure samples were. These materials can reduce the effects of freeze and thaw cycles especially in cold regions.
similar resources
strength characteristics of clay mixtures with waste materials in freeze-thaw cycles
waste tires, rubbers, plastic and steel materials, normally produced in every society, enter the environment and cause serious problems. these problems may, to some extent, be reduced by finding applications for them in engineering, for example, they can be used for geotechnical applications as backfill material and solving problems with low shear strength soils. such materials may be subjected...
full textTest Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles
In order to study the application of lime-fly ash loess in permafrost subgrade engineering, uniaxial compressive test, fast direct shearing test and permeability tests were carried out on lime-fly ash loess under different curing ages and freeze-thaw cycles. Uniaxial compressive strength of lime-fly ash loess increases slowly with the curing ages, and can reach 3.5 Mpa after the curing ages of ...
full textEffect of freeze-thaw cycle on strength and rock strength parameters (A Lushan sandstone case study)
In an era of continued economic development around the globe, numerous rock-related projects including mining and gas/oil exploration are undertaken in regions with cold climates. Winters in the Iranian western and northwestern provinces are characterized by a high precipitation rate and a cold weather. Under such conditions, rocks are exposed to long freezing periods and several freeze-thaw (F...
full textSimulating Martian Conditions: Methanogen Survivability during Freeze-thaw Cycles
Introduction: Methanogens are obligate anaerobes that use molecular hydrogen as an energy source and carbon dioxide as a carbon source to produce methane. They are classified as Archaea and are found in many extreme environments, including hydrothermal vents, volcanoes, and also the human microflora. The current Martian atmosphere is low in pressure, very dry (hyper-arid), and high in radiation...
full textMy Resources
Journal title
volume Volume 1 issue Issue 2
pages 57- 62
publication date 2012-02-19
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023