Stein Type Estimators for Disturbance Variance in Linear Regression Model
author
Abstract:
This article doesn't have abstract
similar resources
Penalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
full textJames-Stein type estimators of variances
In this paper we propose James–Stein type estimators for variances raised to a fixed power by shrinking individual variance estimators towards the arithmetic mean. We derive and estimate the optimal choices of shrinkage parameters under both the squared and the Stein loss functions. Asymptotic properties are investigated under two schemes when either the number of degrees of freedom of each ind...
full textJames–Stein type estimators for ordered normal means
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...
full textTheil-Sen Estimators in a Multiple Linear Regression Model
In this article, we propose the Theil-Sen estimators of parameters in a multiple linear regression model based on a multivariate median, generalizing the Theil-Sen estimator in a simple linear regression model. The proposed estimator is shown to be robust, consistent and asymptotically normal under mild conditions, and super-efficient when the error distribution is discontinuous. It can be chos...
full textElementary Estimators for High-Dimensional Linear Regression
We consider the problem of structurally constrained high-dimensional linear regression. This has attracted considerable attention over the last decade, with state of the art statistical estimators based on solving regularized convex programs. While these typically non-smooth convex programs can be solved by the state of the art optimization methods in polynomial time, scaling them to very large...
full textSmoothing Splines Estimators for Functional Linear Regression
The paper considers functional linear regression, where scalar responses Y1, . . . , Yn are modeled in dependence of random functions X1, . . . ,Xn. We propose a smoothing splines estimator for the functional slope parameter based on a slight modification of the usual penalty. Theoretical analysis concentrates on the error in an out-ofsample prediction of the response for a new random function ...
full textMy Resources
Journal title
volume 15 issue 2
pages 78- 85
publication date 2011-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023