Stability of generalized QCA-functional equation in P-Banach spaces
author
Abstract:
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
similar resources
stability of generalized qca-functional equation in p-banach spaces
in this paper, we investigate the generalizedhyers-ulam-rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{z}-{0,pm1}$) in $p-$banach spaces.
full textOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
full textStability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces
In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation
full textOn the Stability of a Generalized Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces
The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group and let G2, ∗ be a metric group with the metric d ·, · . Given ε > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism H...
full textOn the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces
In this paper, we establish the general solution of the functional equation f(nx+ y) + f(nx− y) = nf(x+ y) + nf(x− y) + 2(f(nx)− nf(x))− 2(n − 1)f(y) for fixed integers n with n 6= 0,±1 and investigate the generalized Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.
full textGeneralized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces
In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.
full textMy Resources
Journal title
volume 1 issue 2
pages 84- 99
publication date 2010-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023