Spike timing dependent plasticity: mechanisms, significance, and controversies

Authors

  • Sh Gharibzadeh
  • B Babadi
  • K Moradi
  • M Sadat Safavi
  • MH Kazemi
Abstract:

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of which depends critically on the temporal order of pre-synaptic and postsynaptic activity. This process, “spike timing dependent plasticity” (STDP), is well suited for creating neural networks with predictive behavior. The cellular mechanisms of STDP are not well understood. But it is believed that a transient increase in postsynaptic intracellular calcium plays a central role and downstream to calcium, several protein kinases and phosphatases signal for the changes in synapse. In most cases, induction of LTD and LTP depends on activation of NMDA receptors that seems to act as coincidence detector by the virtue of their particular property that channel opens only when glutamate binds to its receptor and magnesium block is removed by coincidence depolarization. The degree of channel opening will then determine the amount of calcium passing through the pore. At first look it seems that high levels of calcium induce LTP and moderate calcium levels favor LTD. If this was the case, we were to observe an additional LTD window in positive spike timing range. However, such an additional LTD was not observed in most studies that have mapped out the asymmetric spike timing window. It seems that other spatial and temporal patterns of calcium transient are also important in synaptic modification. Another interesting feature of STDP is its effect on the behavior of neural networks. According to modeling studies, STDP causes a balanced irregular firing regime in networks of neurons sensitive to the pre-synaptic action potentials. Molecular biology and computational tools are now beginning to interpret synaptic plasticity in terms of quantitative and spatiotemporal rules, which are likely to bridge the gap between synaptic physiology and neural network behavior. This review will try to represent a perspective of the latest findings in this field and current opinion and possible future vista.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Spike-timing dependent plasticity

Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian learning induced by tight temporal correlations between the spikes of preand postsynaptic neurons. As with other forms of synaptic plasticity, it is widely believed that it underlies learning and information storage in the brain, as well as the development and refinement of neuronal circuits during brain develop...

full text

Spike-Timing Dependent Plasticity

One of the most prominent but least understood neuroanatornical features of the cerebral cortex is feedback. Neurons within a cortical area generally receive massive excitatory feedback from other neurons in the same cortical area. Some of these neurons, especially those in the superficial layers, send feedforward axons to higher cortical areas while others neurons, particularly those in the de...

full text

Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity.

The ability of neurons to modulate the strength of their synaptic connections has been shown to depend on the relative timing of pre- and postsynaptic action potentials. This form of synaptic plasticity, called spike-timing-dependent plasticity (STDP), has become an attractive model for learning at the single-cell level. Yet, despite its popularity in experimental and theoretical neuroscience, ...

full text

Memory retention and spike-timing-dependent plasticity.

Memory systems should be plastic to allow for learning; however, they should also retain earlier memories. Here we explore how synaptic weights and memories are retained in models of single neurons and networks equipped with spike-timing-dependent plasticity. We show that for single neuron models, the precise learning rule has a strong effect on the memory retention time. In particular, a soft-...

full text

Input synchrony and spike-timing dependent plasticity

The influence of a weight-dependent spike-timing dependent plasticity (STDP) rule on the temporal evolution and equilibrium state of a certain synapse is investigated. We show that under certain conditions, a spike-induced rate-learning scheme could be achieved. Through studying the situation when a single Hodgkin-Huxley neuron is driven by a large ensemble of input neurons, we find that synchr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume Volume 3  issue Supplement 1

pages  92- 92

publication date 2010-11-20

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023