Speech enhancement based on hidden Markov model using sparse code shrinkage
Authors
Abstract:
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM framework, namely sparse code shrinkage-HMM (SCS-HMM).The proposed method on TIMIT database in the presence of three noise types at three SNR levels in terms of PESQ and SNR are evaluated and compared with Auto-Regressive HMM (AR-HMM) and speech enhancement based on HMM with discrete cosine transform (DCT) coefficients using Laplace and Gaussian distributions (LaGa-HMMDCT). The results confirm the superiority of SCS-HMM method in presence of non-stationary noises compared to LaGa-HMMDCT. The results of SCS-HMM method represent better performance of this method compared to AR-HMM in presence of white noise based on PESQ measure.
similar resources
Speech Enhancement Using Sparse Code Shrinkage and Global Soft Decision
This paper relates to a method of enhancing speech quality by eliminating noise in speech presence intervals as well as in speech absence intervals based on speech absence probability. To determine the speech presence and absence intervals, we utilize the global soft decision. This decision makes the estimated statistical parameters of signal density models more reliable. Based on these paramet...
full textHidden-Markov-Model Based Speech Enhancement
The goal of this contribution is to use a parametric speech synthesis system for reducing background noise and other interferences from recorded speech signals. In a first step, Hidden Markov Models of the synthesis system are trained. Two adequate training corpora consisting of text and corresponding speech files have been set up and cleared of various faults, including inaudible utterances or...
full textUsing hidden Markov models for speech enhancement
This work presents an approach to speech enhancement that operates using a speech production model to reconstruct a clean speech signal from a set of speech parameters that are estimated from the noisy speech. The motivation is to remove the distortion and residual and musical noises that are associated with conventional filtering-based methods of speech enhancement. The STRAIGHT vocoder forms ...
full textIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
full textSpeech Recognition Using Hidden Markov Model
Hidden Markov Models (HMMs) are widely used in pattern recognition applications, most notably speech recognition. Speech samples are recorded using a wave surfer tool. Wave surfer is a simple but powerful interface. The sound can be visualized and analyzed in several ways with the help of this tool. The recorded signal (test data) is compared with the original signal (trained data) using Hidden...
full textSpeech Recognition using Hidden Markov Model
Speech technology and systems in human computer interaction have witnessed a steady and important advancement over last two decades. Today, speech technologies are commercially available for boundless but interesting range of tasks. These technologies permit machines to respond correctly and consistently to human voices, and provide useful and valuable services. In the present era, mainly Hidde...
full textMy Resources
Journal title
volume 4 issue 2
pages 213- 218
publication date 2016-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023