Some relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Authors
Abstract:
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate that $L^p(Ksetminus G/H, mu)$ is isometrically isomorphic to a closed subspace of $L^p(G)$. These assist us to study the structure of the classical Banach space created on a double coset space by those produced on topological space.
similar resources
Universal Properties of Group Actions on Locally Compact Spaces
We study universal properties of locally compact G-spaces for countable infinite groups G. In particular we consider open invariant subsets of the G-space βG, and their minimal closed invariant subspaces. These are locally compact free G-spaces, and the latter are also minimal. We examine the properties of these G-spaces with emphasis on their universal properties. As an example of our results,...
full textOn Locally Compact Metrisable Spaces
In Theorem 1 the word metric may be replaced, on the one hand, by regular, on the other, by complete metric. This theorem is of interest chiefly because of the similar well known characterizations of the class of all compact metrisable spaces and of the class of all metrisable spaces which are homeomorphic to complete metric spaces.§ The method of proof also relates it to the two characterizati...
full textHarmonic Analysis on Double Coset Spaces
We prove the existance and uniqueness of quasi-invariant measure on double cost space K\G/H and study the Fourier and Fourier-Stieltjes algebras of these spaces
full textLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
full textLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
full textFuzzifying Strongly Compact Spaces and Fuzzifying Locally Strongly Compact Spaces
In this paper, some characterizations of fuzzifying strong compactness are given, including characterizations in terms of nets and pre -subbases. Several characterizations of locally strong compactness in the framework of fuzzifying topology are introduced and the mapping theorems are obtained.
full textMy Resources
Journal title
volume 09 issue 02
pages 149- 163
publication date 2020-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023