Some lower bounds for the $L$-intersection number of graphs

Authors

  • B. Omoomi Department of Mathematical Sciences‎, ‎Isfahan University of Technology‎, ‎84156-83111‎, ‎Isfahan‎, ‎Iran.
  • Z. Maleki Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran
Abstract:

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the vertices in different parts‎. ‎In this paper‎, ‎some lower bounds for the (bipartite) $L$-intersection number of a graph for various types $L$ in terms of the minimum rank of graph are obtained‎. ‎To achieve the main results we employ the inclusion matrices of set systems and show that how the linear algebra techniques give elegant proof and stronger results in some cases.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

some lower bounds for the $l$-intersection number of graphs

‎for a set of non-negative integers~$l$‎, ‎the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$‎. ‎the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...

full text

Some lower bounds for the L-intersection number of graphs

For a set of non-negative integers L, the L-intersection number of a graph is the smallest number l for which there is an assignment of subsets Av ⊆ {1, . . . , l} to vertices v, such that every two vertices u, v are adjacent if and only if |Au ∩ Av| ∈ L. The bipartite L-intersection number is defined similarly when the conditions are considered only for the vertices in different parts. In this...

full text

General Lower Bounds for the Minor Crossing Number of Graphs

There are three general lower bound techniques for the crossing numbers of graphs: the Crossing Lemma, the bisection method and the embedding method. In this contribution, we present their adaptations to the minor crossing number. Using the adapted bounds, we improve on the known bounds on the minor crossing number of hypercubes. We also point out relations of the minor crossing number to strin...

full text

On Lower Bounds for the Matching Number of Subcubic Graphs

We give a complete description of the set of triples (α, β, γ) of real numbers with the following property. There exists a constant K such that αn3 + βn2 + γn1 − K is a lower bound for the matching number ν(G) of every connected subcubic graph G, where ni denotes the number of vertices of degree i for each i.

full text

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 1

pages  69- 78

publication date 2017-02-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023