Some finite groups with divisibility graph containing no triangles

Authors

  • Danial Khoshnevis School of Mathematics, Iran University of science and Technology, Tehran, Iran
  • Zohreh Mostaghim School of Mathematics, Iran University of Science and Technology, Tehran, Iran.
Abstract:

Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-prime power hypothesis, a group of type($A$),($B$) or ($C$) and certain metacyclic $p-$groups and a minimal non-metacyclic $p-$group where $p$ is a prime number. We will show that the divisibility graph $D(G)$ for all of them has no triangles.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some Induced Subgraphs of Strongly Regular Graphs with no Triangles

Let G be a strongly regular graph with no triangles (SRNT graph) with the parameters (n, k, 0, μ) , if v is a vertex of G, a subgraph which induced by the set of vertices at distance one denoted by G1(v) and subgraph which induced by the set of vertices at distance two denoted by G2(v). In this paper we introduce and study the subgraph which induced by the set U and denoted by G2(U) where, U ca...

full text

non-divisibility for abelian groups

Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting   all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...

full text

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

full text

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

full text

RATIONAL CHARACTER TABLE OF SOME FINITE GROUPS

The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational character tables are also considered into account.The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational charact...

full text

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  57- 65

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023