Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

Authors

  • Arzani, F. PhD, Scientific Computations in OPtimization and Systems Engineering (SCOPE), K.N. Toosi University of Technology, Tehran South Branch, Tehran, Iran
  • Saeidian Tarei, Z. Assistant Professor, Department of Mathematics,University of Kashan, Isfahan, Iran
Abstract:

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in this method is the kind of finite filter. It is proofed due to the filter structure. The construction of the algorithm is based on the two interior and exterior cycles that both of them do the specified operations based on the available conditions. In the iteration of our algorithm, we use a simple subproblem for finding the trial step and we imply the corrected form of Secant condition for approximating the Hessian matrix in order to save the positive definite property of Hessian matrix. Also, the global convergence of the algorithm is established under some standard properties. Furthermore, the numerical results on some test problems show the efficiency and effectiveness of the new algorithm in comparison to some other algorithms.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...

full text

A Retrospective Filter Trust Region Algorithm for Unconstrained Optimization

In this paper, we propose a retrospective filter trust region algorithm for unconstrained optimization, which is based on the framework of the retrospective trust region method and associated with the technique of the multi-dimensional filter. The new algorithm gives a good estimation of trust region radius, relaxes the condition of accepting a trial step for the usual trust region methods. Und...

full text

an adaptive nonmonotone trust region method for unconstrained optimization problems based on a simple subproblem

using a simple quadratic model in the trust region subproblem, a new adaptive nonmonotone trust region method is proposed for solving unconstrained optimization problems. in our method, based on a slight modification of the proposed approach in (j. optim. theory appl. 158(2):626-635, 2013), a new scalar approximation of the hessian at the current point is provided. our new proposed method is eq...

full text

A Nonmonotone trust region method with adaptive radius for unconstrained optimization problems

In this paper, we incorporate a nonmonotone technique with the new proposed adaptive trust region radius (Shi and Guo, 2008) [4] in order to propose a new nonmonotone trust region method with an adaptive radius for unconstrained optimization. Both the nonmonotone techniques and adaptive trust region radius strategies can improve the trust region methods in the sense of global convergence. The g...

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Filter-Trust-Region Method for Unconstrained Optimization

A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an existing technique of Gould, Leyffer, and Toint [SIAM J. Optim., 15 (2004), pp. 17–38] for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization problem. The new algo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  85- 101

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023