Solving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method

Authors

  • nematallah najafi Department of Mathematics, Islamic Azad University, Hamedan Branch, Hamedan, Iran
Abstract:

The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provide the theoretical basis of the proposed algorithm. Some numerical examples indicate that this method is an efficient one to solve the mentioned equations.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

full text

solving multi-order fractional differential equations by reproducing kernel hilbert space method

in this paper we propose a relatively new semi-analytical technique to approximate the solution ofnonlinear multi-order fractional differential equations (fdes). we present some results concerning to the uniqueness of solution of nonlinear multi-order fdes and discuss the existence of solution for nonlinear multi-order fdes in reproducing kernel hilbert space (rkhs). we further give an error an...

full text

Solving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method

In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...

full text

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper, we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multiorder FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

full text

A Reproducing Kernel Hilbert Space Method for Solving Integro-Differential Equations of Fractional Order

In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The presen...

full text

Reproducing Kernel Hilbert Space Method for Solving Fredholm Integro-differential Equations of Fractional Order

This paper presents a computational technique for solving linear and nonlinear Fredholm integro-differential equations of fractional order. In addition, examples that illustrate the pertinent features of this method are presented, and the results of the study are discussed. Results have revealed that the RKHSM yields efficiently a good approximation to the exact solution.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1 (WINTER)

pages  37- 56

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023