Sol-gel synthesis of (Ca-Ba)TiO3 nanoparticles for bone tissue engineering
Authors
Abstract:
Piezoelectric materials are the group of smart materials which have been recently developed for biomedical applications, such as bone tissue engineering. These materials could provide electrical signals with no external source power making them effective for bone remodeling. Between various types of materials, BaTiO3 and CaTiO3 are nontoxic piezoelectric ceramics, which recently have been introduced for bone tissue engineering. It is expected that, the combination of these two ceramics could provide suitable piezoelectricity, bioactivity and biocompatibility for bone tissue engineering applications. The aim of this research is to synthesize (BaxCa1-x)TiO3 (x= 0, 0.6, 0.8, 0.9 and 1) nanopowder using sol-gel method. Moreover, the incorporation of Ca+2 ions in the structure of (BaxCa1-x)TiO3 nanoparticles was chemically, structurally and biologically studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the role of substituted Ca content on the chemical properties and morphology of particles. Indeed, increasing the amounts of Ca+2 ions resulted in the reduced crystallite size. While incorporation of more than 20 at.% Ca resulted in the formation of a biphasic structure, monophasic solid solution without any secondary phase was detected at less Ca content. Moreover, SEM images revealed that Ca substitution reduced particle size from 70.5 ±12 nm to 52.4 ±9 nm, while the morphology of synthesized powders did not significacntly change. Furthermore, incorporation of upon 10 at.% Ca content within (BaxCa1-x)TiO3 significantly promoted MG63 proliferation compared to pure CaTiO3.
similar resources
Synthesis and Characterization of ZnO Nanoparticles Using Sol-gel Process
In the Present work structural, morphological and compositional properties of ZnO nanopowders synthesized using Zinc nitrate and NaOH using sol-gel process were reported. The synthesized nanopowders were further analyzed using X-Ray Diffraction (XRD), Scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopic characterizations. Crystalline size and Lattice strain det...
full textSol-gel technology for biomedical engineering
Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The mate...
full textBioactive sol-gel foams for tissue repair.
Bioactive glasses are known to have the ability to regenerate bone, but their use has been restricted mainly to powder, granules, or small monoliths. This work reports on the development of sol-gel foams with potential applications as bone graft implants or as templates for the in vitro synthesis of bone tissue for transplantation. These bioactive foams exhibit a hierarchical structure with int...
full textEffect of the Synthesis Parameters on the Properties of Biphasic Ca(OH) -HA Nanopowders for Tissue Engineering Applications
Nanocrystalline hydroxyapatite was precipitated from calcium hydroxide and phosphoric acid. Effects of precipitation temperature and different calcium to phosphate ratios (Ca/P) on the obtained powders were investigated. Characteriza-tion of the powders was performed using XRD and FTIR spectra, scanning electron microscopy, and transmission electron microscopy. Increase in precipitation t...
full textAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
full textMy Resources
Journal title
volume 51 issue 1
pages 77- 83
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023