Skolem Odd Difference Mean Graphs
Authors
Abstract:
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} denoted by f*(e) =|f(u)−f(v)|/2 is a bijection. A graph that admits skolem odd difference mean labeling is called odd difference mean graph. We call skolem odd difference mean labeling as skolem even vertex odd difference mean labeling if all the vertex labels are even.
similar resources
skolem odd difference mean graphs
in this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. let g = (v,e) be a graph with p vertices and q edges. g is said be skolem odd difference mean if there exists a function f : v (g) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : e(g) → {1, 3, 5, . . . , 2q−1} d...
full textSkolem difference mean labeling of disconnected graphs
Let G = (V,E) be a graph with p vertices and q edges. G is said to have skolem difference mean labeling if it is possible to label the vertices x ∈ V with distinct elements f(x) from 1, 2, 3, ..., p+ q in such a way that for each edge e = uv, let f∗(e) = l |f(u)−f(v)| 2 m and the resulting labels of the edges are distinct and are from 1, 2, 3, ..., q. A graph that admits a skolem difference mea...
full textFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
full textEven vertex odd mean labeling of graphs
In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even ver...
full textfurther results on odd mean labeling of some subdivision graphs
let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...
full textExtended Skolem type difference sets
A k-extended Skolem-type 5-tuple difference set of order t is a set of t 5-tuples {(di,1, di,2, di,3, di,4, di,5) | i = 1, 2, . . . , t} such that di,1+di,2+di,3+di,4+di,5 = 0 for 1 ≤ i ≤ t and {|di,j| | 1 ≤ i ≤ t, 1 ≤ j ≤ 5} = {1, 2, . . . , 5t+1}\{k}. In this talk, we will give necessary and sufficient conditions on t and k for the existence of a k-extended Skolem-type 5-tuple difference set ...
full textMy Resources
Journal title
volume 45 issue 1
pages 1- 12
publication date 2014-11-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023