Skin in vivo Dosimetry in Radiotherapy

Authors

  • abbas haghparast Associate Professor,Medical Physics and Medical Engineering Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Mahdi Mohammadi Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Razieh Zaghian Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
Abstract:

Introduction: Due to the prevalence of skin problems in patients after radiotherapy, skin dose measuring is importance. Content: Skin in vivo dosimetry means measuring the patient's (or phantom) skin dose during radiotherapy. According to the ICRP 59, the dose at the depth of 0.07 mm is known as a skin dose. The most radiosensitive epidermis cells are located at this depth. Several studies have assessed the skin diseases in different areas of the body caused by radiotherapy. The most common problems are skin dermatitis and alopecia depending on the exposure conditions and physiological features of the patient`s body occur several days to several weeks after treatment. Skin dose in radiotherapy, arising from the primary photon beam, backscatter radiation from more depths, scattering from other equipments in the path of radiation, treatment room and also head leakage. The main challenge of the skin dosimetry is the lack of particle equilibrium at 0.07 mm depth, as well as dosimetry in the build-up region with a high-dose gradient. On the other hand, studies have shown that treatment planning system (TPS), especially in Intensity-modulated radiotherapy (IMRT) and tomotherapy, overestimates the skin dose. Skin dosimetry is more important in modern radiotherapy techniques (such as IMRT) because these treatments use more tangential beams than 3D-CRT, which increase the dose and cause skin problems. Various dosimeters, such as TLDs, Films, Diodes, and MOSFETs, are used for skin dosimetry, each with advantages and disadvantages. TLDs are small in size, but require long-term pre- and post-processing and are incapable to real-time display of dosimetric information. According to tissue equivalency, the Gafchromic EBT films show acceptable dose accuracy. These films are able to display a 2D dose distribution, but these dosimeters cannot display dosimetric information in real-time. Diodes and MOSFETs, due to their small size, can be appropriate choices for skin dosimetry and provide high spatial resolution. The newest device proposed for the skin dosimetry is MOSkin, which is based on the MOSFET structure. In addition to its small sensitive volume, this dosimeter acts as a real-time dosimeter. The reproducibility and linearity of the MOSkin response have been approved at the water equivalent depth of 0.07 mm and within the range of 50-300 cGy. This limited dynamic range doesn’t allow this dosimeter to be made in the 2D array. The most important problem with the MOSkin is requirement of a wire to external voltage supply. Presenting a wireless version will be an important step in the field of skin dosimetry in radiotherapy. Results: Advantages of MOSkin dosimetry outperformed its disadvantages for skin dosimetry in radiotherapy. Conclusion: The MOSkin is an appropriate choice for skin in vivo dosimetry because it has small sensitive volume and acts as a real-time dosimeter.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

EPID in vivo Dosimetry

Introduction: The most modern radiotherapy devices are equipped with an Electronic Portal Imaging Device (EPID) system which is located on opposite side of the machine’s head. EPID system is often used to setting up the position verification during or between radiotherapy sessions. Material and Methods: Various types of dosimeters have been used to setting up ...

full text

In vivo dosimetry of intraoral stent using TLD during external photon beam radiotherapy of oral cavity

Introduction: Individual oral stent is a mouth-opening device that used in head and neck cancer radiotherapy with the intention of decreasing radiation dose to health tissues. The aim of this study was to check the dose delivered to both the hard palate and tongue when patient uses the stent during radiotherapy of tongue carcinoma. Methods and materials<stron...

full text

Skin Dosimetry in Radiotherapy of Breast Cancer: a Comparison between EBT and EBT3 Radiochromic Films

Objective: Radiochromic EBT3 film is a later generation of radiochromic films. The aim of this study is to compare EBT and EBT3 radiochromic films in radiotherapy fields of breast cancer.Methods: A RANDO phantom was irradiated by a 6 MV Siemens Primus linac with medial and lateral fields of radiotherapy of breast cancer. Dosimetry was performed in various points in the fields using EBT and EBT3...

full text

In Vivo Dosimetry Using a Flat Surface Sun Nuclear Corporation Diode in 60co Beams for Some Radiotherapy Treatments in Ghana

Introduction: One of the useful standard quality assurance techniques in radiation therapy is monitoring entrance doses in in-vivo dosimetry. An overall tolerance limit of 5% of the absorbed radiation dose has been recommended by the International Commission of Radiological Units. The implementation of an in vivo dosimet...

full text

In vivo real-time rectal wall dosimetry for prostate radiotherapy.

Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for realtime in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70 microm. Two MOSFE...

full text

Implementation of an intraoperative electron radiotherapy in vivo dosimetry program

BACKGROUND Intraoperative electron radiotherapy (IOERT) is a highly selective radiotherapy technique which aims to treat restricted anatomic volumes during oncological surgery and is now the subject of intense re-evaluation. In vivo dosimetry has been recommended for IOERT and has been identified as a risk-reduction intervention in the context of an IOERT risk analysis. Despite reports of fruit...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue Special Issue-12th. Iranian Congress of Medical Physics

pages  17- 17

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023