Size Dependent Nonlinear Bending Analysis of a Flexoelectric Functionally Graded Nano-Plate Under Thermo-Electro-Mechanical Loads

Authors

  • A Ghobadi Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran
  • H Golestanian Faculty of Engineering, Shahrekord University, Shahrekord, Iran
  • Y Tadi Beni Faculty of Engineering, Shahrekord University, Shahrekord, Iran
Abstract:

The effects of flexoelectricity on thermo-electro-mechanical behavior of a functionally graded electro-piezo-flexoelectric nano-plate are investigated in this paper using flexoelectric modified and the Kirchhoff classic theories. Moreover, using the variation method and the principle of minimum potential energy for the first time, the coupled governing nonlinear differential equations of the nano-plate and their associated boundary conditions are obtained.  The functionally graded nano-plate is modeled using a power law equation along the plate thickness direction. The nano-plate behavior is analyzed under mechanical, electrical, and thermal loadings with different boundary conditions. It should be noted that the direct and reverse flexoelectric effects under different loading conditions were investigated.  Finally, the important quantities such as: the nano-plate deflection, the induced electrical voltage for different values of the length parameter, the power index related to the functionally graded behavior model and the geometric ratio parameter are determined. The results indicate that in the presence of flexoelectricity, the rigidity of the nano-plate increases. Also, the deflection and the generated electric potential along nano-plate thickness decreases. Finally, induced polarization decreases as a linear temperature variation is applied on the nano-plate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Elastoplastic Analysis of Functionally Graded Beams under Mechanical Loads

Elastic-plastic behavior of a beam made of functionally graded material is investigated in this work‎. ‎The beam is subjected to the constant axial and bending loads and the critical values of these loads for yield‎, ‎collapse and elastic-plastic conditions are obtained‎. ‎The variation of elastic modulus and yield strength through the height of the beam is determined with an exponential rule‎....

full text

Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytica...

full text

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

full text

Bending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory

In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...

full text

nonlinear bending analysis of thick functionally graded plates based on third-order shear deformation plate theory

in this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. the formulation is derived based on the third-order shear deformation plate theory and von kármán type non-linearity. young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. the principle of virtual wo...

full text

Thermo-Elastic Analysis of Non-Uniform Functionally Graded Circular Plate Resting on a Gradient Elastic Foundation

Present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (FG) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. The plate is coupled by an elastic medium which is simulated as a Winkler- Pasternak foundation with gradient coefficients in the radial and circumferential...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  33- 56

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023