Simulation of environmental dose distribution of nuclear gauge device MC-1DR by MCNPX code
Authors
Abstract:
In this study, distribution of dose rate around the nuclear gauge device MC-1DR which located in shahrekord university was simulated by MCNPX code and was compared whit the measured values. Due to the asymmetry of device and neutron and gamma source positions, the dose rates were determined at a distance of 5, 30 and 100 cm in different directions. Base on the complex geometry of the inside of device, there are discripency between measured and simulated results in the some points. In general, the values show when the gamma source is positioned in safe mode. The maximum and minimum of dose rate are in below and back of the device. Also, in the left side neutron dose and in the right side gamma dose is greatest. Finally, for safe operating one hour is at most recommended at a distance of 1m in compare with standard threshhold, 12mrem per day.
similar resources
Numerical investigation of absorption dose distribution of onion powder in electron irradiation system by MCNPX code
a Department of physics, faculty of science, Takestan Branch, Islamic Azad University,Takestan, IRAN. b Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran, IRAN. ________________________________________________________________________________________ Abstract: Absorption dose distribution of onion powder in electron irradiation system has been numerically inve...
full textEvaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code
Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide. Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...
full textDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
full textAssessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
full textSimulation of gamma-ray gamma rays by composite shields compared to the lead protection using the MCNPX code
In this study, cobalt 60 with a mean energy of (1.25 Mev) was used as a photonic source to investigate the effect of decreasing gamma-ray intensity by materials and polymer composite using MCNPX code. First, we investigated the effect of thickness and density on the reduction of gamma ray intensity, and then the comparison between the lead protector, tungsten and polymer composite in several th...
full textdesign and simulation of photoneutron source by mcnpx monte carlo code for boron neutron capture therapy
introduction electron linear accelerator (linac) can be used for neutron production in boron neutron capture therapy (bnct). bnct is an external radiotherapeutic method for the treatment of some cancers. in this study, varian 2300 c/d linac was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for bnct. materials and methods photoneutron sources w...
full textMy Resources
Journal title
volume 8 issue 4
pages 257- 260
publication date 2020-08
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023