Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

Authors

Abstract:

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, the intrinsic mode functions (IMFs) of the Electric load curve, which are a group of average and pseudo-periodic average signals, are extracted by using the empirical mode decomposition (EMD) method, which is a non-linear and non-constant time-frequency method. For this purpose, the maximum and minimum points of the signal are determined, and then, in one cycle, the difference between the average curve of the upper and lower envelope is calculated with it. This continues until the result falls below a threshold value, and then, the rest of the signal which contains noise is discarded to get a relatively clean signal. In the second step, we need to obtain the sub-sequences of each IMF. So, we use the wavelet transform. The wavelet transform is a kind of transform that is used to decompose a continuous signal into its frequency components, and the resolution of each component is equal to its scale. Each subsequence contains different information and details that can help the improvement of the prediction accuracy. In the third step, the obtained subsequences are aggregated and finally used for prediction by Support Vector Regression (SVR). Support vector regression is a type of supervised learning system that is used for both grouping and estimating the fitting function of data in regression problems so that the least error occurs in the grouping of data or in the fitting function. The purpose of the proposed method is to reduce the error for daily and hourly load prediction. In this method, two datasets of Poland and Canada have been experimented. With four criteria of mean square error (MSE), root mean square error (RMSE), average absolute percentage error (MAPE) and mean absolute error (MAE), the results are evaluated. The findings show that the load prediction error for the Polish data set are as follows: MSE equal to 0.0012, RMSE equal to 0.0342, MAPE equal to 2.9771, and MAE equal to 0.0044. For Canadian data set, the results are as follows: MSE equal to 5.0969e-07, RMSE equal to 7.1393e-04, MAPE criterion equal to 0.9571, and the MAE criterion equal to 2624e-04. Comparison of the proposed method with other competing methods show that better results are achieved by the proposed method in term of the error rate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR), this paper presents a SVR model hybridized with the empirical mode decomposition (EMD) method and auto regression (AR) ...

full text

Short-Term Wind Energy Forecasting Using Support Vector Regression

Wind energy prediction has an important part to play in a smart energy grid for load balancing and capacity planning. In this paper we explore, if wind measurements based on the existing infrastructure of windmills in neighbored wind parks can be learned with a soft computing approach for wind energy prediction in the ten-minute to six-hour range. For this sake we employ Support Vector Regressi...

full text

Short Term Load Forecasting Using A Hybrid Model Based On Support Vector Regression

This paper proposes a new hybrid method based on support vector regression (SVR) to predict the load value of power systems accurately. The proposed method will use the SVR to overcome some deficiencies such as overfitting and complicated structure that exist in the neural network. In order to find the optimal values of the parameters, krill herd (KH) algorithm is used as the optimizer. The KH ...

full text

Short-term load forecasting using a kernel-based support vector regression combination model

Kernel-based methods, such as support vector regression (SVR), have demonstrated satisfactory performance in short-term load forecasting (STLF) application. However, the good performance of kernel-based method depends on the selection of an appropriate kernel function that fits the learning target, unsuitable kernel function or hyper-parameters setting may lead to significantly poor performance...

full text

Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search

Due to the electricity market deregulation and integration of renewable resources, electrical load forecasting is becoming increasingly important for the Chinese government in recent years. The electric load cannot be exactly predicted only by a single model, because the short-term electric load is disturbed by several external factors, leading to the characteristics of volatility and instabili...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 19  issue 3

pages  35- 48

publication date 2022-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023