Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Authors

  • Habib MotieGhader Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran ,Tehran, Iran
  • Sajjad Gharaghani Laboratory of bioinformatics and drug design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
  • Yosef Masoudi-Sobhanzadeh Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
Abstract:

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and we observed the MGALA and SGALA algorithms have the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms is better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model has more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

full text

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

full text

Sequential Genetic Search for Ensemble Feature Selection

Ensemble learning constitutes one of the main directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. One technique, which proved to be effective for constructing an ensemble of diverse classifiers, is the use of feature subsets. Among different approaches to ensemble feature selection, genetic search was s...

full text

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 2

pages  533- 553

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023