Selecting effective features from Phonocardiography by Genetic Algorithm based on Pearson`s Coefficients Correlation
Authors
Abstract:
The heart is one of the most important organs in the body, which is responsible for pumping blood into the valvular systems. Beside, heart valve disorders are one of the leading causes of death in the world. These disorders are complications in the heart valves that cause the valves to deform or damage, and as a result, the sounds caused by their opening and closing compared to a healthy heart. Obviously, due to the complexities of cardiac audio signals and their recording, designing an accurate diagnosis system free of noise and fast enough is difficult to achieve. One of the most important issues in designing an intelligent heart disease diagnosis system is the use of appropriate primary data. This means that these data must not only be recorded according to the patientchr('39')s equipment and clinical condition, but also must be labeled according to the correct diagnosis of the physician. However, in this study, an attempt has been made to provide an intelligent system for diagnosing valvular heart failure using phonocardiographic sound signals to have maximum diagnostic power. For this purpose, the signals are labeled and used under the supervision of a specialist doctor. The main goal is to select the effective feature vectors using the genetic optimization method and also based on the evaluation function by Pearson correlation coefficients. Before extraction feature step, preprocessing from data recording, normalization, segmentation, and filtering were used to increase system performance accuracy. For better result, Signal temporal, wavelet and signal energy components are extracted from the prepared signal as feature extraction step. Whereas extracted problem space were not correlated enough, in next step principal component analysis, linear separator analysis, and uncorrelated linear separator analysis methods were used to make feature vectors in a final correlated space. In selecting step, an efficient and simple method is used inorder to estimate the number of optimal features. In general, correlation is a criterion for determining the relationship between variables. The difference between the correlations of all feature subsets is calculated (for both in-class and out-of-class subsets) and then categorized in descending order according to the evaluation function. As a result, in the feature selection step the evaluation function is based on the Pearson statistical method, which is evaluated by a genetic algorithm with the aim of identifying more effective and correlated features in the final vectors. Eventually In this paper, two widely used neural networks with dynamic and static structure including perceptron and Elman neural networks have been used to evaluate the accuracy of the proposed vectors. The results of modeling the process of selecting effective features and diagnosing the disease show the efficiency of the proposed method.
similar resources
Multi-Features Encoding and Selecting Based on Genetic Algorithm for Human Action Recognition from Video
In this study, we proposed multiple local features encoded for recognizing the human actions. The multiple local features were obtained from the simple feature description of human actions in video. The simple features are two kinds of important features, optical flow and edge, to represent the human perception for the video behavior. As the video information descriptors, optical flow and edge,...
full textSelecting Materialized Views based on Genetic Algorithm
As the data sets increase in data warehouse day by day, the cost used for OLAP operations becomes extremely high. One of the most effective ways to solve this problem is to build appropriate materialized views in the data warehouse. In order to select the appropriate views to be materialized with the possible minimized cost, we propose a novel approach to the materialized view selection problem...
full textSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
full textMeasurement of the correlation coefficients between extracted features from CT and MR images
Introduction: Nowadays applying computer in image processing is being improved revolutionary for solving medical images deficiencies. Image features that are analysis in image processing show image information. The aim of the present study was to find correlation between CT- scan and MRI images' features. Materials and Methods: After data acquisition, applying...
full textDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
full textA Meta-Heuristic Based on Genetic Algorithm for Selecting Bailiffs by Districts
This paper presents a proposal for solving the Problem of Selecting Bailiffs by Districts (PSB/D) in the central of warrants in Maranho-Brazil using Genetic Algorithm (GA). The complete solution to the PSB/D problem is a Web-based software called GAPSB/D. We conducted several experiments to prove its applicability considering two scenarios. The first scenario represents the central of warrants ...
full textMy Resources
Journal title
volume 17 issue 3
pages 157- 176
publication date 2020-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023