Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

Authors

  • Nan Wang
  • Wei Liu
Abstract:

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of random variables satifying certain assumptions. These moment expansions complement the classical central limit theorem for a random number of i.i.d. random variables when the random number has the form ta, which arises from many sequential statistical procedures. They can be used to correct higher order bias and/or skewness in S_{t_{a}}^{prime }/sqrt{t_{a}} to make asymptotic approximation more accurate for small and moderate sample sizes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

full text

asymptotic property of order statistics and sample quntile

چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...

15 صفحه اول

The entropy of a randomly stopped sequence

A Wald-like equation is proved for the entropy of a ran-db@y, stopped sequence of independent identically distributed discrete random variables XI, X2,. with a nonanticipating stopping time N.

full text

Asymptotic Monadic Second-Order Logic

In this paper we introduce so-called asymptotic logics, logics that are meant to reason about weights of elements in a model in a way inspired by topology. Our main subject of study is Asymptotic Monadic Second-Order Logic over infinite words. This is a logic talking about ωwords labelled by integers. It contains full monadic second-order logic and can express asymptotic properties of integers ...

full text

Randomly stopped sums: models and psychological applications

This paper describes an approach to modeling the sums of a continuous random variable over a number of measurement occasions when the number of occasions also is a random variable. A typical example is summing the amounts of time spent attending to pieces of information in an information search task leading to a decision to obtain the total time taken to decide. Although there is a large litera...

full text

Asymptotic Expansions for Higher-Order Scalar Difference Equations

We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue None

pages  115- 134

publication date 2003-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023