Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Authors

  • A. Torkaman Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran.
Abstract:

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope with the uncertainty existing in these games, we design a Bayesian network whose parameters are learned from an unlabeled game-logs dataset; so it does not require a human expert’s knowledge. We evaluate our model on StarCraft which is considered as a unified test-bed in this domain. The model is compared with that proposed by Synnaeve and Bessiere. Experimental results on recorded games of human players show that the proposed model can predict the opponent’s future decisions more effectively. Using this model, it is possible to create an adaptive game intelligence algorithm applicable to RTS games, where the concept of build order (the order of building construction) exists.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Opponent Modeling in Real-Time Strategy Games

Real-time strategy games present an environment in which game AI is expected to behave realistically. One feature of realistic behaviour in game AI is the ability to recognise the strategy of the opponent player. This is known as opponent modeling. In this paper, we propose an approach of opponent modeling based on hierarchically structured models. The top-level of the hierarchy can classify th...

full text

Real-Time Opponent Modeling in Trick-Taking Card Games

As adversarial environments become more complex, it is increasingly crucial for agents to exploit the mistakes of weaker opponents, particularly in the context of winning tournaments and competitions. In this work, we present a simple post processing technique, which we call Perfect Information Post-Mortem Analysis (PIPMA), that can quickly assess the playing strength of an opponent in certain ...

full text

Opponent Behaviour Recognition for Real-Time Strategy Games

In Real-Time Strategy (RTS) video games, players (controlled by humans or computers) build structures and recruit armies, fight for space and resources in order to control strategic points, destroy the opposing force and ultimately win the game. Players need to predict where and how the opponents will strike in order to best defend themselves. Conversely, assessing how the opponents will defend...

full text

Modeling Unit Classes as Agents in Real-Time Strategy Games

We present CLASSQL, a multi-agent model for playing real-time strategy games, where learning and control of our own team’s units is decentralized; each agent uses its own reinforcement learning process to learn and control units of the same class. Coordination between these agents occurs as a result of a common reward function shared by all agents and synergistic relations in a carefully crafte...

full text

Using Neural Networks for Strategy Selection in Real-Time Strategy Games

Video games continue to grow in importance as a platform for Artificial Intelligence (AI) research since they offer a rich virtual environment without the noise present in the real world. In this paper, a simulated ship combat game is used as an environment for evolving neural network controlled ship combat strategies. Domain knowledge is used as input to the Artificial Neural Networks (ANNs) t...

full text

A Rough – Neuro Model for Classifying Opponent Behavior in Real Time Strategy Games

Real Time strategy games offer an environment where game AI is known to conduct actuality. One feature of realistic behavior in game AI is the ability to recognize the strategy of the opponent player. This is known as opponent modeling. In this paper, a classification Rough-Neuro hybrid model of the RTS opponent player behavior process is proposed. As a mean to achieve better game performance, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  149- 159

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023