Robust Model Predictive Control for a Class of Discrete Nonlinear systems
Authors
Abstract:
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the MPC’s stabilizing components; i.e. the local terminal cost function and the corresponding terminal set. The proposed control approach is applied to a CSTR. Simulation results show that the proposed robust MPC scheme is quite effective and it has a remarkable performance.
similar resources
Robust model predictive control for nonlinear discrete-time systems
This paper describes a model predictive control (MPC) algorithm for the solution of a state-feedback robust control problem for discrete-time nonlinear systems. The control law is obtained through the solution of a finite-horizon dynamic game and guarantees robust stability in the face of a class of bounded disturbances and/or parameter uncertainties. A simulation example is reported to show th...
full textA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
full textRobust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem involving linear matrix inequa...
full textImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
full textRobust Adaptive Model Predictive Control of Nonlinear Systems
When faced with making a decision, it is only natural that one would aim to select the course of action which results in the “best" possible outcome. However, the ability to arrive at a decision necessarily depends upon two things: a well-defined notion of what qualities make an outcome desirable, and a previous decision1 defining to what extent it is necessary to characterize the quality of in...
full textA Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
full textMy Resources
Journal title
volume 6 issue 1
pages 104- 118
publication date 2020-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023