Rhombellanic Crystals and Quasicrystals
author
Abstract:
Design of some crystal and quasicrystal networks, based on rhombellane tiling,is presented. [1,1,1]Propellane,is a synthesized organic molecule; its hydrogenated form, the bicyclo[1.1.1]pentane,may be represented by the complete bipartite graph K2,3 which is the smallest rhombellane. Topology of translational and radial structures involving rhombellanes is described in terms of vertex symbol, connectivity sequence, ring sequence and map operations relating structures to their seeds. It is shown, by alternating sum of ranked substructures, that radial structures represent complex constructions of higher rank. Basic properties of rhombellanes, coloring included, are outlined.
similar resources
Photonic crystals, amorphous materials, and quasicrystals
Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have b...
full textHigh-temperature solution growth of intermetallic single crystals and quasicrystals
Solution growth continues to be one of the most powerful techniques for the production of single crystals for basic and applied research. It is a versatile technique that allows for the growth of congruently and incongruently melting materials with equal ease. The primary requirement for growth is that there be an exposed primary solidification surface in the appropriate equilibrium alloy phase...
full textQuasicrystals
The discretely diffracting aperiodic crystals termed quasicrystals, discovered at NBS in the early 1980s, have led to much interdisciplinary activity involving mainly materials science, physics, mathematics, and crystallography. It led to a new understanding of how atoms can arrange themselves, the role of periodicity in nature, and has created a new branch of crystallography.
full textImpact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals.
Here we demonstrate a novel quantitative procedure to pursue statistical studies on the geometric properties of photonic crystals and photonic quasicrystals (PQCs) which consist of separate dielectric particles. The geometric properties are quantified and correlated to the size of the photonic band gap (PBG) for wide permittivity range using three characteristic parameters: shape anisotropy, si...
full textLarge-scale Molecular Dynamics Simulations of Shock Waves in Laves Crystals and Icosahedral Quasicrystals
Quasicrystals and ordinary crystals both possess long-range translational order. But quasicrystals are aperiodic since their symmetry is non-crystallographic. The aim of this project is to study the behavior of shock waves in periodic and aperiodic structures and to compare the results. The expectation is that new types of defects are generated in the aperiodic materials. The materials studied ...
full textApplications of Group Cohomology to the Classification of Crystals and Quasicrystals
In 1962, Bienenstock and Ewald described the classification of crystalline space groups algebraically in the dual, or Fourier, space. Recently, the method has been applied to quasicrystals and modulated crystals. We interpret this method in terms of group cohomology. A certain cohomology group classifies the space groups, and the dual homology group gives all gauge invariants. We exploit this d...
full textMy Resources
Journal title
volume 9 issue 3
pages 167- 178
publication date 2018-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023