Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Authors
Abstract:
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of interest (ROI)-to-ROI connectome maps were analyzed in both “Nose>Mouth” and “Mouth>Nose” contrasts. Results: As a result, there were more connection pairs in the “Mouth” breathing condition, i.e., 14 seeds and 14 connecting pairs in the “Mouth>Nose” contrast, compared to 7 seeds and 4 connecting pairs in the “Nose>Mouth” contrast (false discovery rate [FDR] of P<0.05). Conclusion: The present study demonstrated that mouth breathing with controlled respiratory cycles could significantly induce alterations in functional connectivity in the resting-state network, suggesting that it can differently affect resting brain function; in particular, the brain can hardly rest during mouth breathing, as opposed to conventional nasal breathing.
similar resources
Migraine classification using magnetic resonance imaging resting-state functional connectivity data.
Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; ...
full textReporting of Resting-State Functional Magnetic Resonance Imaging Preprocessing Methodologies
There has been a rapid increase in resting-state functional magnetic resonance imaging (rs-fMRI) literature in the past few years. We aim to highlight the variability in the current reporting practices of rs-fMRI acquisition and preprocessing parameters. The PubMed database was searched for the selection of appropriate articles in the rs-fMRI literature and the most recent 100 articles were sel...
full textResting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning
Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitation...
full textResting-state functional magnetic resonance imaging: review of neurosurgical applications.
Recent research in brain imaging has highlighted the role of different neural networks in the resting state (ie, no task) in which the brain displays spontaneous low-frequency neuronal oscillations. These can be indirectly measured with resting-state functional magnetic resonance imaging, and functional connectivity can be inferred as the spatiotemporal correlations of this signal. This techniq...
full textAltered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine.
OBJECTIVE The periaqueductal gray matter (PAG), a known modulator of somatic pain transmission, shows evidence of interictal functional and structural abnormalities in migraineurs, which may contribute to hyperexcitability along spinal and trigeminal nociceptive pathways, and lead to the migraine attack. The aim of this study was to examine functional connectivity of the PAG in migraine. METH...
full textResting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury.
IMPORTANCE The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of the brain substrates of cognitive outcome after traumatic axonal injury. This knowledge may contribute to improve clinical management and rehabilitation programs. OBJECTIVE To study functional magnetic resonance imaging abnormalities in signal amplitude and brain connectivity...
full textMy Resources
Journal title
volume 13 issue 6
pages 855- 864
publication date 2022-11
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023